cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A356043 a(n) = Sum_{k=1..n} sigma_3(k) * floor(n/k).

Original entry on oeis.org

1, 11, 40, 123, 250, 540, 885, 1553, 2339, 3609, 4942, 7349, 9548, 12998, 16681, 22030, 26945, 34805, 41666, 52207, 62212, 75542, 87711, 107083, 122961, 144951, 166177, 194812, 219203, 256033, 285826, 328624, 367281, 416431, 460246, 525484, 576139, 644749, 708520
Offset: 1

Views

Author

Seiichi Manyama, Jul 24 2022

Keywords

Crossrefs

Partial sums of A321140.
Column k=3 of A356045.
Cf. A000005 (tau).

Programs

  • Mathematica
    Table[Sum[DivisorSigma[3, k]*Floor[n/k], {k, 1, n}], {n, 1, 50}] (* Vaclav Kotesovec, Aug 07 2022 *)
  • PARI
    a(n) = sum(k=1, n, sigma(k, 3)*(n\k));
    
  • PARI
    a(n) = sum(k=1, n, sumdiv(k, d, d^3*numdiv(k/d)));
    
  • PARI
    my(N=40, x='x+O('x^N)); Vec(sum(k=1, N, sigma(k, 3)*x^k/(1-x^k))/(1-x))

Formula

a(n) = Sum_{k=1..n} Sum_{d|k} d^3 * tau(k/d).
G.f.: (1/(1-x)) * Sum_{k>=1} sigma_3(k) * x^k/(1 - x^k).
a(n) ~ Pi^8 * n^4 / 32400. - Vaclav Kotesovec, Aug 07 2022