cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 24 results. Next

A360405 a(n) = A360393(A356133(n)).

Original entry on oeis.org

2, 6, 15, 27, 34, 45, 55, 60, 69, 81, 91, 96, 108, 114, 124, 135, 142, 153, 163, 168, 180, 186, 195, 208, 217, 222, 231, 244, 249, 262, 271, 276, 285, 297, 307, 312, 324, 330, 339, 352, 361, 366, 375, 387, 394, 405, 414, 421, 432, 438, 447, 459, 466, 477
Offset: 1

Views

Author

Clark Kimberling, Apr 01 2023

Keywords

Comments

This is the fourth of four sequences that partition the positive integers. Suppose that u = (u(n)) and v = (v(n)) are increasing sequences of positive integers. Let u' and v' be their (increasing) complements, and consider these four sequences:
(1) v o u, defined by (v o u)(n) = v(u(n));
(2) v' o u;
(3) v o u';
(4) v' o u.
Every positive integer is in exactly one of the four sequences. Their limiting densities are 4/9, 2/9, 2/9, 1/9, respectively (and likewise for A360394-A360401).

Examples

			(1)  v o u = (3, 7, 10, 11, 14, 16, 17, 20, 23, 25, 26, 29, 30, 33, 37, ...) = A360402
(2)  v' o u = (1, 4, 9, 13, 19, 22, 24, 31, 36, 40, 42, 49, 51, 58, 64, ...) = A360403
(3)  v o u' = (5, 8, 12, 18, 21, 28, 32, 35, 39, 46, 50, 53, 59, 62, 67, ...) = A360404
(4)  v' o u' = (2, 6, 15, 27, 34, 45, 55, 60, 69, 81, 91, 96, 108, 114, ...) = A360405
		

Crossrefs

Cf. A026530, A360392, A360393, A360394-A3546352 (intersections instead of results of compositions), A360398-A360401 (results of reversed compositions), A360402, A360403, A360404.

Programs

  • Mathematica
    z = 2000; zz = 100;
    u = Accumulate[1 + ThueMorse /@ Range[0, 600]]; (* A026430 *)
    u1 = Complement[Range[Max[u]], u];  (* A356133 *)
    v = u + 2;  (* A360392 *)
    v1 = Complement[Range[Max[v]], v]; (* A360393 *)
    Table[v[[u[[n]]]], {n, 1, zz}]     (* A360402 *)
    Table[v1[[u[[n]]]], {n, 1, zz}]    (* A360403 *)
    Table[v[[u1[[n]]]], {n, 1, zz}]    (* A360404 *)
    Table[v1[[u1[[n]]]], {n, 1, zz}]   (* A360405 *)

A360139 a(n) = V(A356133(n)), where V(1) = 1 and V(k) = A285953(k+1) for k >= 2.

Original entry on oeis.org

3, 8, 18, 30, 35, 48, 57, 63, 72, 84, 93, 98, 111, 116, 125, 138, 143, 156, 165, 170, 183, 188, 198, 209, 219, 224, 234, 245, 252, 263, 273, 279, 288, 300, 309, 314, 327, 332, 342, 353, 363, 368, 378, 390, 395, 408, 416, 422, 435, 440, 450, 462, 467, 480
Offset: 1

Views

Author

Clark Kimberling, Feb 03 2023

Keywords

Comments

This is the fourth of four sequences that partition the positive integers. Suppose that u = (u(n)) and v = (v(n)) are increasing sequences of positive integers. Let u' and v' be their (increasing) complements, and consider these four sequences:
(1) v o u, defined by (v o u)(n) = v(u(n));
(2) v' o u;
(3) v o u';
(4) v' o u.
Every positive integer is in exactly one of the four sequences. Their limiting densities are 4/9, 2/9, 2/9, 1/9, respectively.

Examples

			(1)  v o u = (2, 6, 9, 10, 13, 15, 16, 19, 22, 24, 25, 28, 29, 32, 36, ...) = A360136
(2)  v' o u = (1, 5, 12, 14, 21, 23, 26, 33, 39, 41, 44, 50, 54, 59, 65, ...) = A360137
(3)  v o u' = (4, 7, 11, 17, 20, 27, 31, 34, 38, 45, 49, 52, 58, 61, 66, ...) = A360138
(4)  v' o u' = (3, 8, 18, 30, 35, 48, 57, 63, 72, 84, 93, 98, 111, 116, ...) = A360139
		

Crossrefs

Cf. A026530, A359352, A285953, A359277 (intersections instead of results of composition), A359352-A360138.

Programs

  • Mathematica
    z = 2000; zz = 100;
    u = Accumulate[1 + ThueMorse /@ Range[0, 600]]; (* A026430 *)
    u1 = Complement[Range[Max[u]], u];  (* A356133 *)
    v = u + 1;  (* A285954 *)
    v1 = Complement[Range[Max[v]], v];  (* A285953 *)
    Table[v[[u[[n]]]], {n, 1, zz}]      (* A360136 *)
    Table[v1[[u[[n]]]], {n, 1, zz}]     (* A360137 *)
    Table[v[[u1[[n]]]], {n, 1, zz}]     (* A360138 *)
    Table[v1[[u1[[n]]]], {n, 1, zz}]    (* A360139 *)

A360397 Intersection of A356133 and A360393.

Original entry on oeis.org

2, 4, 13, 22, 34, 40, 49, 58, 64, 76, 85, 94, 106, 112, 124, 133, 142, 148, 157, 166, 178, 184, 193, 202, 208, 220, 229, 238, 244, 253, 262, 274, 280, 292, 301, 310, 322, 328, 337, 346, 352, 364, 373, 382, 394, 400, 412, 421, 430, 436, 445, 454, 466, 472
Offset: 1

Views

Author

Clark Kimberling, Feb 10 2023

Keywords

Comments

This is the fourth of four sequences that partition the positive integers. Starting with a general overview, suppose that u = (u(n)) and v = (v(n)) are increasing sequences of positive integers. Let u' and v' be their complements, and assume that the following four sequences are infinite:
(1) u ^ v = intersection of u and v (in increasing order);
(2) u ^ v';
(3) u' ^ v;
(4) u' ^ v'.
Every positive integer is in exactly one of the four sequences. The limiting densities of these four sequences are 4/9, 2/9, 2/9, and 1/9, respectively.
For A360397, u, v, u', v', are sequences obtained from the Thue-Morse sequence, A026430, as follows:
u = A026530 = (1,3,5,6,8,9,10, 12, ... ) = partial sums of A026430;
u' = A356133 = (2,4,7,11,13,17, 20, ... ) = complement of u;
v = u + 1 = A285954, except its initial 1;
v' = complement of v.

Examples

			(1)  u ^ v = (3, 5, 8, 10, 12, 14, 16, 18, 21, 23, 26, 28, 30, 33, ...) =  A360394
(2)  u ^ v' = (1, 6, 9, 15, 19, 24, 27, 31, 36, 42, 45, 51, 55, 60, ...) =  A360395
(3)  u' ^ v = (7, 11, 17, 20, 25, 29, 32, 38, 43, 47, 53, 56, 62, ...) = A360396
(4)  u' ^ v' = (2, 4, 13, 22, 34, 40, 49, 58, 64, 76, 85, 94, 106, ...) = A360397
		

Crossrefs

Programs

  • Mathematica
    z = 400;
    u = Accumulate[1 + ThueMorse /@ Range[0, z]];   (* A026430 *)
    u1 = Complement[Range[Max[u]], u];  (* A356133 *)
    v = u + 2 ; (* A360392 *)
    v1 = Complement[Range[Max[v]], v];    (* A360393 *)
    Intersection[u, v]    (* A360394 *)
    Intersection[u, v1]   (* A360395 *)
    Intersection[u1, v]   (* A360396 *)
    Intersection[u1, v1]  (* A360397 *)

A360401 a(n) = A356133(A360393(n)).

Original entry on oeis.org

2, 4, 11, 17, 25, 38, 43, 56, 64, 71, 79, 92, 101, 106, 119, 124, 133, 146, 151, 164, 173, 178, 191, 197, 206, 218, 227, 233, 242, 253, 260, 272, 280, 287, 295, 308, 317, 322, 335, 341, 350, 362, 371, 377, 385, 398, 403, 415, 425, 430, 443, 449, 457, 470
Offset: 1

Views

Author

Clark Kimberling, Mar 11 2023

Keywords

Comments

This is the third of four sequences that partition the positive integers. Suppose that u = (u(n)) and v = (v(n)) are increasing sequences of positive integers. Let u' and v' be their (increasing) complements, and consider these four sequences:
(1) u o v, defined by (u o v)(n) = u(v(n));
(2) u o v';
(3) u' o v;
(4) v' o u'.
Every positive integer is in exactly one of the four sequences. Their limiting densities are 4/9, 2/9, 2/9, 1/9 (and likewise for A360394-A360397 and A360402-A360405).

Examples

			(1)  u o v = (5, 8, 10, 12, 15, 16, 18, 21, 24, 26, 27, 30, 31, 35, 37, 39, ...) = A360398
(2)  u o v' = (1, 3, 6, 9, 14, 19, 23, 28, 33, 36, 41, 46, 51, 54, 60, 63, 68, ...) = A360399
(3)  u' o v = (7, 13, 20, 22, 29, 32, 34, 40, 47, 49, 53, 58, 62, 67, 74, 76, ...) = A360400
(4)  u' o v' = (2, 4, 11, 17, 25, 38, 43, 56, 64, 71, 79, 92, 101, 106, 119, ...) = A360401
		

Crossrefs

Cf. A026530, A356133, A360392, A360393, A360398, A286354, A286355, A360394 (intersections instead of results of composition), A360402-A360405.

Programs

  • Mathematica
    z = 2000;
    u = Accumulate[1 + ThueMorse /@ Range[0, 600]]; (* A026430 *)
    u1 = Complement[Range[Max[u]], u];  (* A356133 *)
    v = u + 2;  (* A360392 *)
    v1 = Complement[Range[Max[v]], v];  (* A360393 *)
    zz = 100;
    Table[u[[v[[n]]]], {n, 1, zz}]    (* A360398 *)
    Table[u[[v1[[n]]]], {n, 1, zz}]   (* A360399 *)
    Table[u1[[v[[n]]]], {n, 1, zz}]   (* A360400 *)
    Table[u1[[v1[[n]]]], {n, 1, zz}]  (* A360401 *)

A360135 a(n) = A356133(A285953(n+1)).

Original entry on oeis.org

2, 7, 13, 22, 34, 40, 53, 62, 67, 76, 89, 97, 104, 115, 122, 131, 142, 148, 161, 169, 176, 187, 193, 202, 215, 223, 229, 238, 251, 257, 269, 278, 283, 292, 305, 313, 320, 331, 337, 346, 359, 367, 373, 382, 394, 400, 412, 421, 428, 439, 445, 454, 466, 472
Offset: 1

Views

Author

Clark Kimberling, Jan 30 2023

Keywords

Comments

This is the fourth of four sequences that partition the positive integers. Suppose that u = (u(n)) and v = (v(n)) are increasing sequences of positive integers. Let u' and v' be their (increasing) complements, and consider these four sequences:
(1) u o v, defined by (u o v)(n) = u(v(n));
(2) u o v';
(3) u' o v;
(4) v' o u'.
Every positive integer is in exactly one of the four sequences. Their limiting densities are 4/9, 2/9, 2/9, 1/9, respectively.

Examples

			(1) u o v = (3, 6, 9, 10, 14, 15, 16, 19, 23, 24, 26, 28, 30, 33, 36, 37, 41, ...) = A359352
(2) u o v' = (1, 5, 8, 12, 18, 21, 27, 31, 35, 39, 45, 50, 52, 59, 61, 66, 72, ...) = A359353
(3) u' o v = (4, 11, 17, 20, 25, 29, 32, 38, 43, 47, 49, 56, 58, 64, 71, 74, ...) = A360134
(4) u' o v' = (2, 7, 13, 22, 34, 40, 53, 62, 67, 76, 89, 97, 104, 115, 122, ...) = A360135
		

Crossrefs

Cf. A026530, A359352, A285953, A285954, A359277 (intersections instead of results of composition), A359352-A360134, A360136-A360139.

Programs

  • Mathematica
    z = 2000; zz = 100;
    u = Accumulate[1 + ThueMorse /@ Range[0, 600]]; (* A026430 *)
    u1 = Complement[Range[Max[u]], u];  (* A356133 *)
    v = u + 1;  (* A285954 *)
    v1 = Complement[Range[Max[v]], v];  (* A285953 *)
    Table[u[[v[[n]]]], {n, 1, zz}]      (* A359352 *)
    Table[u[[v1[[n]]]], {n, 1, zz}]     (* A359353 *)
    Table[u1[[v[[n]]]], {n, 1, zz}]     (* A360134 *)
    Table[u1[[v1[[n]]]], {n, 1, zz}]    (* A360135 *)

A360134 a(n) = A356133(1 + A026430(n)).

Original entry on oeis.org

4, 11, 17, 20, 25, 29, 32, 38, 43, 47, 49, 56, 58, 64, 71, 74, 79, 83, 85, 92, 94, 101, 106, 110, 112, 119, 124, 127, 133, 137, 140, 146, 151, 155, 157, 164, 166, 173, 178, 182, 184, 191, 197, 200, 206, 208, 211, 218, 220, 227, 233, 236, 242, 244, 247, 253
Offset: 1

Views

Author

Clark Kimberling, Jan 30 2023

Keywords

Comments

This is the third of four sequences that partition the positive integers. Suppose that u = (u(n)) and v = (v(n)) are increasing sequences of positive integers. Let u' and v' be their (increasing) complements, and consider these four sequences:
(1) u o v, defined by (u o v)(n) = u(v(n));
(2) u o v';
(3) u' o v;
(4) v' o u'.
Every positive integer is in exactly one of the four sequences. Their limiting densities are 4/9, 2/9, 2/9, 1/9, respectively.

Examples

			(1) u o v = (3, 6, 9, 10, 14, 15, 16, 19, 23, 24, 26, 28, 30, 33, 36, 37, 41, ...) = A359352
(2) u o v' = (1, 5, 8, 12, 18, 21, 27, 31, 35, 39, 45, 50, 52, 59, 61, 66, 72, ...) = A359353
(3) u' o v = (4, 11, 17, 20, 25, 29, 32, 38, 43, 47, 49, 56, 58, 64, 71, 74, ...) = A360134
(4) u' o v' = (2, 7, 13, 22, 34, 40, 53, 62, 67, 76, 89, 97, 104, 115, 122, ...) = A360135
		

Crossrefs

Cf. A026530, A359352, A285953, A285954, A359277 (intersections instead of results of composition), A359352, A359353, A360135-A360139.

Programs

  • Mathematica
    z = 2000; zz = 100;
    u = Accumulate[1 + ThueMorse /@ Range[0, 600]]; (* A026430 *)
    u1 = Complement[Range[Max[u]], u];  (* A356133 *)
    v = u + 1;  (* A285954 *)
    v1 = Complement[Range[Max[v]], v];  (* A285953 *)
    Table[u[[v[[n]]]], {n, 1, zz}]      (* A359352 *)
    Table[u[[v1[[n]]]], {n, 1, zz}]     (* A359353 *)
    Table[u1[[v[[n]]]], {n, 1, zz}]     (* A360134 *)
    Table[u1[[v1[[n]]]], {n, 1, zz}]    (* A360135 *)
  • Python
    def A360134(n): return 3*(m:=n+1+(n-1>>1)+(n-1&1|(n.bit_count()&1^1)))-(2 if (m-1).bit_count()&1 else 1) # Chai Wah Wu, Mar 01 2023

A360138 a(n) = 1 + A026430(A356133(n)).

Original entry on oeis.org

4, 7, 11, 17, 20, 27, 31, 34, 38, 45, 49, 52, 58, 61, 66, 71, 74, 81, 85, 88, 94, 97, 101, 108, 112, 115, 119, 126, 129, 135, 139, 142, 146, 153, 157, 160, 166, 169, 173, 180, 184, 187, 191, 197, 200, 206, 211, 214, 220, 223, 227, 233, 236, 242, 247, 250
Offset: 1

Views

Author

Clark Kimberling, Feb 03 2023

Keywords

Comments

This is the third of four sequences that partition the positive integers. Suppose that u = (u(n)) and v = (v(n)) are increasing sequences of positive integers. Let u' and v' be their (increasing) complements, and consider these four sequences:
(1) v o u, defined by (v o u)(n) = v(u(n));
(2) v' o u;
(3) v o u';
(4) v' o u.
Every positive integer is in exactly one of the four sequences. Their limiting densities are 4/9, 2/9, 2/9, 1/9, respectively.

Examples

			(1)  v o u = (2, 6, 9, 10, 13, 15, 16, 19, 22, 24, 25, 28, 29, 32, 36, ...) = A360136
(2)  v' o u = (1, 5, 12, 14, 21, 23, 26, 33, 39, 41, 44, 50, 54, 59, 65, ...) = A360137
(3)  v o u' = (4, 7, 11, 17, 20, 27, 31, 34, 38, 45, 49, 52, 58, 61, 66, ...) = A360138
(4)  v' o u' = (3, 8, 18, 30, 35, 48, 57, 63, 72, 84, 93, 98, 111, 116, ...) = A360139
		

Crossrefs

Cf. A026530, A359352, A285953, A359277 (intersections instead of results of composition), A359352-A360136, A360138-A360139.

Programs

  • Mathematica
    z = 2000; zz = 100;
    u = Accumulate[1 + ThueMorse /@ Range[0, 600]]; (* A026430 *)
    u1 = Complement[Range[Max[u]], u];  (* A356133 *)
    v = u + 1;  (* A285954 *)
    v1 = Complement[Range[Max[v]], v];  (* A285953 *)
    Table[v[[u[[n]]]], {n, 1, zz}]      (* A360136 *)
    Table[v1[[u[[n]]]], {n, 1, zz}]     (* A360137 *)
    Table[v[[u1[[n]]]], {n, 1, zz}]     (* A360138 *)
    Table[v1[[u1[[n]]]], {n, 1, zz}]    (* A360139 *)
  • Python
    def A360138(n): return (m:=3*n-(2 if (n-1).bit_count()&1 else 1))+(m-1>>1)+(m-1&1|(m.bit_count()&1^1))+1 # Chai Wah Wu, Mar 01 2023

A360396 Intersection of A356133 and A360392.

Original entry on oeis.org

7, 11, 17, 20, 25, 29, 32, 38, 43, 47, 53, 56, 62, 67, 71, 74, 79, 83, 89, 92, 97, 101, 104, 110, 115, 119, 122, 127, 131, 137, 140, 146, 151, 155, 161, 164, 169, 173, 176, 182, 187, 191, 197, 200, 206, 211, 215, 218, 223, 227, 233, 236, 242, 247, 251, 257
Offset: 1

Views

Author

Clark Kimberling, Feb 05 2023

Keywords

Comments

This is the third of four sequences that partition the positive integers. Starting with a general overview, suppose that u = (u(n)) and v = (v(n)) are increasing sequences of positive integers. Let u' and v' be their complements, and assume that the following four sequences are infinite:
(1) u ^ v = intersection of u and v (in increasing order);
(2) u ^ v';
(3) u' ^ v;
(4) u' ^ v'.
Every positive integer is in exactly one of the four sequences. The limiting densities of these four sequences are 4/9, 2/9, 2/9, and 1/9, respectively.
For A360396, u, v, u', v', are sequences obtained from the Thue-Morse sequence, A026430, as follows:
u = A026530 = (1,3,5,6,8,9,10, 12, ... ) = partial sums of A026430
u' = A356133 = (2,4,7,11,13,17, 20, ... ) = complement of u
v = u + 1 = A285954, except its initial 1
v' = complement of v.

Examples

			(1)  u ^ v = (3, 5, 8, 10, 12, 14, 16, 18, 21, 23, 26, 28, 30, 33, ...) =  A360394
(2)  u ^ v' = (1, 6, 9, 15, 19, 24, 27, 31, 36, 42, 45, 51, 55, 60, ...) =  A360395
(3)  u' ^ v = (7, 11, 17, 20, 25, 29, 32, 38, 43, 47, 53, 56, 62, ...) = A360396
(4)  u' ^ v' = (2, 4, 13, 22, 34, 40, 49, 58, 64, 76, 85, 94, 106, ...) = A360397
		

Crossrefs

Programs

  • Mathematica
    z = 400;
    u = Accumulate[1 + ThueMorse /@ Range[0, z]];   (* A026430 *)
    u1 = Complement[Range[Max[u]], u];  (* A356133 *)
    v = u + 2 ; (* A360392 *)
    v1 = Complement[Range[Max[v]], v];  (* A360393 *)
    Intersection[u, v]    (* A360394 *)
    Intersection[u, v1]   (* A360395 *)
    Intersection[u1, v]   (* A360396 *)
    Intersection[u1, v1]  (* A360397 *)

A360400 a(n) = A356133(A360392(n)).

Original entry on oeis.org

7, 13, 20, 22, 29, 32, 34, 40, 47, 49, 53, 58, 62, 67, 74, 76, 83, 85, 89, 94, 97, 104, 110, 112, 115, 122, 127, 131, 137, 140, 142, 148, 155, 157, 161, 166, 169, 176, 182, 184, 187, 193, 200, 202, 208, 211, 215, 220, 223, 229, 236, 238, 244, 247, 251, 257
Offset: 1

Views

Author

Clark Kimberling, Mar 11 2023

Keywords

Comments

This is the third of four sequences that partition the positive integers. Suppose that u = (u(n)) and v = (v(n)) are increasing sequences of positive integers. Let u' and v' be their (increasing) complements, and consider these four sequences:
(1) u o v, defined by (u o v)(n) = u(v(n));
(2) u o v';
(3) u' o v;
(4) v' o u'.
Every positive integer is in exactly one of the four sequences. Their limiting densities are 4/9, 2/9, 2/9, 1/9 (and likewise for A360394-A360397 and A360402-A360405).

Examples

			(1)  u o v = (5, 8, 10, 12, 15, 16, 18, 21, 24, 26, 27, 30, 31, 35, 37, 39, ...) = A360398
(2)  u o v' = (1, 3, 6, 9, 14, 19, 23, 28, 33, 36, 41, 46, 51, 54, 60, 63, 68, ...) = A360399
(3)  u' o v = (7, 13, 20, 22, 29, 32, 34, 40, 47, 49, 53, 58, 62, 67, 74, 76, ...) = A360400
(4)  u' o v' = (2, 4, 11, 17, 25, 38, 43, 56, 64, 71, 79, 92, 101, 106, 119, ...) = A360401
		

Crossrefs

Cf. A026530, A356133, A360392, A360393, A360398, A286354, A286356, A360394 (intersections instead of results of composition), A360402-A360405.

Programs

  • Mathematica
    z = 2000;
    u = Accumulate[1 + ThueMorse /@ Range[0, 600]]; (* A026430 *)
    u1 = Complement[Range[Max[u]], u];  (* A356133 *)
    v = u + 2;  (* A360392 *)
    v1 = Complement[Range[Max[v]], v];  (* A360393 *)
    zz = 100;
    Table[u[[v[[n]]]], {n, 1, zz}]    (* A360398 *)
    Table[u[[v1[[n]]]], {n, 1, zz}]   (* A360399 *)
    Table[u1[[v[[n]]]], {n, 1, zz}]   (* A360400 *)
    Table[u1[[v1[[n]]]], {n, 1, zz}]  (* A360401 *)

A360404 a(n) = A360392(A356133(n)).

Original entry on oeis.org

5, 8, 12, 18, 21, 28, 32, 35, 39, 46, 50, 53, 59, 62, 67, 72, 75, 82, 86, 89, 95, 98, 102, 109, 113, 116, 120, 127, 130, 136, 140, 143, 147, 154, 158, 161, 167, 170, 174, 181, 185, 188, 192, 198, 201, 207, 212, 215, 221, 224, 228, 234, 237, 243, 248, 251
Offset: 1

Views

Author

Clark Kimberling, Apr 01 2023

Keywords

Comments

This is the third of four sequences that partition the positive integers. Suppose that u = (u(n)) and v = (v(n)) are increasing sequences of positive integers. Let u' and v' be their (increasing) complements, and consider these four sequences:
(1) v o u, defined by (v o u)(n) = v(u(n));
(2) v' o u;
(3) v o u';
(4) v' o u.
Every positive integer is in exactly one of the four sequences. Their limiting densities are 4/9, 2/9, 2/9, 1/9, respectively (and likewise for A360394-A360401).

Examples

			(1)  v o u = (3, 7, 10, 11, 14, 16, 17, 20, 23, 25, 26, 29, 30, 33, 37, ...) = A360402
(2)  v' o u = (1, 4, 9, 13, 19, 22, 24, 31, 36, 40, 42, 49, 51, 58, 64, ...) = A360403
(3)  v o u' = (5, 8, 12, 18, 21, 28, 32, 35, 39, 46, 50, 53, 59, 62, 67, ...) = A360404
(4)  v' o u' = (2, 6, 15, 27, 34, 45, 55, 60, 69, 81, 91, 96, 108, 114, ...) = A360405
		

Crossrefs

Cf. A026530, A360392, A360393, A360394-A3546352 (intersections instead of results of compositions), A360398-A360401 (results of reversed compositions), A360402, A360403, A360405.

Programs

  • Mathematica
    z = 2000; zz = 100;
    u = Accumulate[1 + ThueMorse /@ Range[0, 600]]; (* A026430 *)
    u1 = Complement[Range[Max[u]], u];  (* A356133 *)
    v = u + 2;  (* A360392 *)
    v1 = Complement[Range[Max[v]], v];  (* A360393 *)
    Table[v[[u[[n]]]], {n, 1, zz}]     (* A360402 *)
    Table[v1[[u[[n]]]], {n, 1, zz}]    (* A360403 *)
    Table[v[[u1[[n]]]], {n, 1, zz}]    (* A360404 *)
    Table[v1[[u1[[n]]]], {n, 1, zz}]   (* A360405 *)
Showing 1-10 of 24 results. Next