cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A360392 a(n) = 2 + A026430(n); complement of A360393.

Original entry on oeis.org

3, 5, 7, 8, 10, 11, 12, 14, 16, 17, 18, 20, 21, 23, 25, 26, 28, 29, 30, 32, 33, 35, 37, 38, 39, 41, 43, 44, 46, 47, 48, 50, 52, 53, 54, 56, 57, 59, 61, 62, 63, 65, 67, 68, 70, 71, 72, 74, 75, 77, 79, 80, 82, 83, 84, 86, 88, 89, 90, 92, 93, 95, 97, 98, 100
Offset: 1

Views

Author

Clark Kimberling, Feb 05 2023

Keywords

Crossrefs

Programs

  • Mathematica
    2 + Accumulate[1 + ThueMorse /@ Range[0, 120]]
  • Python
    from itertools import islice, accumulate
    def A360392_gen(): # generator of terms
        yield 3
        blist, s = [1], 3
        while True:
            c = [3-d for d in blist]
            blist += c
            yield from (s+d for d in accumulate(c))
            s += sum(c)
    A360392_list = list(islice(A360392_gen(),30)) # Chai Wah Wu, Feb 22 2023
    
  • Python
    def A360392(n): return n+2+(n-1>>1)+(n-1&1|(n.bit_count()&1^1)) # Chai Wah Wu, Mar 01 2023

A360393 Complement of A360392.

Original entry on oeis.org

1, 2, 4, 6, 9, 13, 15, 19, 22, 24, 27, 31, 34, 36, 40, 42, 45, 49, 51, 55, 58, 60, 64, 66, 69, 73, 76, 78, 81, 85, 87, 91, 94, 96, 99, 103, 106, 108, 112, 114, 117, 121, 124, 126, 129, 133, 135, 139, 142, 144, 148, 150, 153, 157, 159, 163, 166, 168, 171, 175
Offset: 1

Views

Author

Clark Kimberling, Feb 05 2023

Keywords

Crossrefs

Programs

  • Mathematica
    v = 2 + Accumulate[1 + ThueMorse /@ Range[0, 200]]; (* A360392 *)
    Complement[Range[Max[v]], v]    (* A360393 *)
  • PARI
    a(n) = if(n < 3, [1, 2][n], 3*n - 5 - hammingweight(n-3)%2) \\ Winston de Greef, Mar 27 2023
  • Python
    from itertools import islice
    def A360393_gen(): # generator of terms
        yield from (1,2)
        blist, s = [1], 3
        while True:
            c = [3-d for d in blist]
            blist += c
            for d in c:
                yield from range(s+1,s:=s+d)
    A360393_list = list(islice(A360393_gen(),30)) # Chai Wah Wu, Feb 22 2023
    

Formula

A360393(n) = A356133(n-2) + 2 for n>=3

A360394 Intersection of A026430 and A360392.

Original entry on oeis.org

3, 5, 8, 10, 12, 14, 16, 18, 21, 23, 26, 28, 30, 33, 35, 37, 39, 41, 44, 46, 48, 50, 52, 54, 57, 59, 61, 63, 65, 68, 70, 72, 75, 77, 80, 82, 84, 86, 88, 90, 93, 95, 98, 100, 102, 105, 107, 109, 111, 113, 116, 118, 120, 123, 125, 128, 130, 132, 134, 136, 138
Offset: 1

Views

Author

Clark Kimberling, Feb 05 2023

Keywords

Comments

This is the first of four sequences that partition the positive integers. Starting with a general overview, suppose that u = (u(n)) and v = (v(n)) are increasing sequences of positive integers. Let u' and v' be their complements, and assume that the following four sequences are infinite:
(1) u ^ v = intersection of u and v (in increasing order);
(2) u ^ v';
(3) u' ^ v;
(4) u' ^ v'.
Every positive integer is in exactly one of the four sequences. The limiting densities of these four sequences are 4/9, 2/9, 2/9, and 1/9, respectively (and likewise for A360402-A360405).
For A360394, u, v, u', v', are sequences obtained from the Thue-Morse sequence, A026430, as follows:
u = A026530 = (1,3,5,6,8,9,10, 12, ... ) = partial sums of A026430
u' = A356133 = (2,4,7,11,13,17, 20, ... ) = complement of u
v = u + 1 = A285954, except its initial 1
v' = complement of v.

Examples

			(1)  u ^ v = (3, 5, 8, 10, 12, 14, 16, 18, 21, 23, 26, 28, 30, 33, ...) =  A360394
(2)  u ^ v' = (1, 6, 9, 15, 19, 24, 27, 31, 36, 42, 45, 51, 55, 60, ...) =  A360395
(3)  u' ^ v = (7, 11, 17, 20, 25, 29, 32, 38, 43, 47, 53, 56, 62, ...) = A360396
(4)  u' ^ v' = (2, 4, 13, 22, 34, 40, 49, 58, 64, 76, 85, 94, 106, ...) = A360397
		

Crossrefs

Programs

  • Mathematica
    z = 400;
    u = Accumulate[1 + ThueMorse /@ Range[0, z]];   (* A026430 *)
    u1 = Complement[Range[Max[u]], u];  (* A356133 *)
    v = u + 2 ; (* A360392 *)
    v1 = Complement[Range[Max[v]], v];  (* A360393 *)
    Intersection[u, v]     (* A360394 *)
    Intersection[u, v1]    (* A360395 *)
    Intersection[u1, v]    (* A360396 *)
    Intersection[u1, v1]   (* A360397 *)

A360398 a(n) = A026430(1 + A360392(n)).

Original entry on oeis.org

5, 8, 10, 12, 15, 16, 18, 21, 24, 26, 27, 30, 31, 35, 37, 39, 42, 44, 45, 48, 50, 52, 55, 57, 59, 61, 65, 66, 69, 70, 72, 75, 78, 80, 81, 84, 86, 88, 91, 93, 95, 98, 100, 102, 105, 107, 108, 111, 113, 116, 118, 120, 123, 125, 126, 129, 132, 134, 135, 138
Offset: 1

Views

Author

Clark Kimberling, Feb 10 2023

Keywords

Comments

This is the first of four sequences that partition the positive integers. Suppose that u = (u(n)) and v = (v(n)) are increasing sequences of positive integers. Let u' and v' be their (increasing) complements, and consider these four sequences:
(1) u o v, defined by (u o v)(n) = u(v(n));
(2) u o v';
(3) u' o v;
(4) v' o u'.
Every positive integer is in exactly one of the four sequences. Their limiting densities are 4/9, 2/9, 2/9, 1/9 (and likewise for A360394-A360397 and A360402-A360405).

Examples

			(1)  u o v = (5, 8, 10, 12, 15, 16, 18, 21, 24, 26, 27, 30, 31, 35, 37, 39, ...) = A360398
(2)  u o v' = (1, 3, 6, 9, 14, 19, 23, 28, 33, 36, 41, 46, 51, 54, 60, 63, 68, ...) = A360399
(3)  u' o v = (7, 13, 20, 22, 29, 32, 34, 40, 47, 49, 53, 58, 62, 67, 74, 76, ...) = A360400
(4)  u' o v' = (2, 4, 11, 17, 25, 38, 43, 56, 64, 71, 79, 92, 101, 106, 119, ...) = A360401
		

Crossrefs

Cf. A026530, A356133, A360392, A360393, A360399, A286355, A286356, A360394 (intersections instead of results of composition), A360402-A360405.

Programs

  • Mathematica
    z = 2000;
    u = Accumulate[1 + ThueMorse /@ Range[0, 600]]; (* A026430 *)
    u1 = Complement[Range[Max[u]], u];  (* A356133 *)
    v = u + 2;  (* A360392 *)
    v1 = Complement[Range[Max[v]], v];    (* A360393 *)
    zz = 100;
    Table[u[[v[[n]]]], {n, 1, zz}]    (* A360398 *)
    Table[u[[v1[[n]]]], {n, 1, zz}]   (* A360399 *)
    Table[u1[[v[[n]]]], {n, 1, zz}]   (* A360400 *)
    Table[u1[[v1[[n]]]], {n, 1, zz}]  (* A360401 *)

A360402 a(n) = A360392(A026430(n)).

Original entry on oeis.org

3, 7, 10, 11, 14, 16, 17, 20, 23, 25, 26, 29, 30, 33, 37, 38, 41, 43, 44, 47, 48, 52, 54, 56, 57, 61, 63, 65, 68, 70, 71, 74, 77, 79, 80, 83, 84, 88, 90, 92, 93, 97, 100, 101, 104, 105, 107, 110, 111, 115, 118, 119, 122, 123, 125, 128, 131, 132, 134, 137
Offset: 1

Views

Author

Clark Kimberling, Mar 11 2023

Keywords

Comments

This is the first of four sequences that partition the positive integers. Suppose that u = (u(n)) and v = (v(n)) are increasing sequences of positive integers. Let u' and v' be their (increasing) complements, and consider these four sequences:
(1) v o u, defined by (v o u)(n) = v(u(n));
(2) v' o u;
(3) v o u';
(4) v' o u.
Every positive integer is in exactly one of the four sequences. Their limiting densities are 4/9, 2/9, 2/9, 1/9, respectively (and likewise for A360394-A360401).

Examples

			(1)  v o u = (3, 7, 10, 11, 14, 16, 17, 20, 23, 25, 26, 29, 30, 33, 37, ...) = A360402
(2)  v' o u = (1, 4, 9, 13, 19, 22, 24, 31, 36, 40, 42, 49, 51, 58, 64, ...) = A360403
(3)  v o u' = (5, 8, 12, 18, 21, 28, 32, 35, 39, 46, 50, 53, 59, 62, 67, ...) = A360404
(4)  v' o u' = (2, 6, 15, 27, 34, 45, 55, 60, 69, 81, 91, 96, 108, 114, ...) = A360405
		

Crossrefs

Cf. A026530, A360392, A360393, A360394-A3546352 (intersections instead of results of compositions), A360398-A360401 (results of reversed compositions), A360403, A360404, A360405.

Programs

  • Mathematica
    z = 2000; zz = 100;
    u = Accumulate[1 + ThueMorse /@ Range[0, 600]]; (* A026430 *)
    u1 = Complement[Range[Max[u]], u];  (* A356133 *)
    v = u + 2;  (* A360392 *)
    v1 = Complement[Range[Max[v]], v];  (* A360393 *)
    Table[v[[u[[n]]]], {n, 1, zz}]    (* A360402 *)
    Table[v1[[u[[n]]]], {n, 1, zz}]   (* A360403 *)
    Table[v[[u1[[n]]]], {n, 1, zz}]   (* A360404 *)
    Table[v1[[u1[[n]]]], {n, 1, zz}]  (* A360405 *)
  • Python
    def A360392(n): return n+2+(n-1>>1)+(n-1&1|(n.bit_count()&1^1))
    def A026430(n): return n+(n-1>>1)+(n-1&1|(n.bit_count()&1^1))
    def A360402(n): return A360392(A026430(n)) # Winston de Greef, Mar 24 2023

A360397 Intersection of A356133 and A360393.

Original entry on oeis.org

2, 4, 13, 22, 34, 40, 49, 58, 64, 76, 85, 94, 106, 112, 124, 133, 142, 148, 157, 166, 178, 184, 193, 202, 208, 220, 229, 238, 244, 253, 262, 274, 280, 292, 301, 310, 322, 328, 337, 346, 352, 364, 373, 382, 394, 400, 412, 421, 430, 436, 445, 454, 466, 472
Offset: 1

Views

Author

Clark Kimberling, Feb 10 2023

Keywords

Comments

This is the fourth of four sequences that partition the positive integers. Starting with a general overview, suppose that u = (u(n)) and v = (v(n)) are increasing sequences of positive integers. Let u' and v' be their complements, and assume that the following four sequences are infinite:
(1) u ^ v = intersection of u and v (in increasing order);
(2) u ^ v';
(3) u' ^ v;
(4) u' ^ v'.
Every positive integer is in exactly one of the four sequences. The limiting densities of these four sequences are 4/9, 2/9, 2/9, and 1/9, respectively.
For A360397, u, v, u', v', are sequences obtained from the Thue-Morse sequence, A026430, as follows:
u = A026530 = (1,3,5,6,8,9,10, 12, ... ) = partial sums of A026430;
u' = A356133 = (2,4,7,11,13,17, 20, ... ) = complement of u;
v = u + 1 = A285954, except its initial 1;
v' = complement of v.

Examples

			(1)  u ^ v = (3, 5, 8, 10, 12, 14, 16, 18, 21, 23, 26, 28, 30, 33, ...) =  A360394
(2)  u ^ v' = (1, 6, 9, 15, 19, 24, 27, 31, 36, 42, 45, 51, 55, 60, ...) =  A360395
(3)  u' ^ v = (7, 11, 17, 20, 25, 29, 32, 38, 43, 47, 53, 56, 62, ...) = A360396
(4)  u' ^ v' = (2, 4, 13, 22, 34, 40, 49, 58, 64, 76, 85, 94, 106, ...) = A360397
		

Crossrefs

Programs

  • Mathematica
    z = 400;
    u = Accumulate[1 + ThueMorse /@ Range[0, z]];   (* A026430 *)
    u1 = Complement[Range[Max[u]], u];  (* A356133 *)
    v = u + 2 ; (* A360392 *)
    v1 = Complement[Range[Max[v]], v];    (* A360393 *)
    Intersection[u, v]    (* A360394 *)
    Intersection[u, v1]   (* A360395 *)
    Intersection[u1, v]   (* A360396 *)
    Intersection[u1, v1]  (* A360397 *)

A360401 a(n) = A356133(A360393(n)).

Original entry on oeis.org

2, 4, 11, 17, 25, 38, 43, 56, 64, 71, 79, 92, 101, 106, 119, 124, 133, 146, 151, 164, 173, 178, 191, 197, 206, 218, 227, 233, 242, 253, 260, 272, 280, 287, 295, 308, 317, 322, 335, 341, 350, 362, 371, 377, 385, 398, 403, 415, 425, 430, 443, 449, 457, 470
Offset: 1

Views

Author

Clark Kimberling, Mar 11 2023

Keywords

Comments

This is the third of four sequences that partition the positive integers. Suppose that u = (u(n)) and v = (v(n)) are increasing sequences of positive integers. Let u' and v' be their (increasing) complements, and consider these four sequences:
(1) u o v, defined by (u o v)(n) = u(v(n));
(2) u o v';
(3) u' o v;
(4) v' o u'.
Every positive integer is in exactly one of the four sequences. Their limiting densities are 4/9, 2/9, 2/9, 1/9 (and likewise for A360394-A360397 and A360402-A360405).

Examples

			(1)  u o v = (5, 8, 10, 12, 15, 16, 18, 21, 24, 26, 27, 30, 31, 35, 37, 39, ...) = A360398
(2)  u o v' = (1, 3, 6, 9, 14, 19, 23, 28, 33, 36, 41, 46, 51, 54, 60, 63, 68, ...) = A360399
(3)  u' o v = (7, 13, 20, 22, 29, 32, 34, 40, 47, 49, 53, 58, 62, 67, 74, 76, ...) = A360400
(4)  u' o v' = (2, 4, 11, 17, 25, 38, 43, 56, 64, 71, 79, 92, 101, 106, 119, ...) = A360401
		

Crossrefs

Cf. A026530, A356133, A360392, A360393, A360398, A286354, A286355, A360394 (intersections instead of results of composition), A360402-A360405.

Programs

  • Mathematica
    z = 2000;
    u = Accumulate[1 + ThueMorse /@ Range[0, 600]]; (* A026430 *)
    u1 = Complement[Range[Max[u]], u];  (* A356133 *)
    v = u + 2;  (* A360392 *)
    v1 = Complement[Range[Max[v]], v];  (* A360393 *)
    zz = 100;
    Table[u[[v[[n]]]], {n, 1, zz}]    (* A360398 *)
    Table[u[[v1[[n]]]], {n, 1, zz}]   (* A360399 *)
    Table[u1[[v[[n]]]], {n, 1, zz}]   (* A360400 *)
    Table[u1[[v1[[n]]]], {n, 1, zz}]  (* A360401 *)

A360395 Intersection of A026430 and A360394.

Original entry on oeis.org

1, 6, 9, 15, 19, 24, 27, 31, 36, 42, 45, 51, 55, 60, 66, 69, 73, 78, 81, 87, 91, 96, 99, 103, 108, 114, 117, 121, 126, 129, 135, 139, 144, 150, 153, 159, 163, 168, 171, 175, 180, 186, 189, 195, 199, 204, 210, 213, 217, 222, 225, 231, 235, 240, 246, 249, 255
Offset: 1

Views

Author

Clark Kimberling, Feb 05 2023

Keywords

Comments

This is the second of four sequences that partition the positive integers. Starting with a general overview, suppose that u = (u(n)) and v = (v(n)) are increasing sequences of positive integers. Let u' and v' be their complements, and assume that the following four sequences are infinite:
(1) u ^ v = intersection of u and v (in increasing order);
(2) u ^ v';
(3) u' ^ v;
(4) u' ^ v'.
Every positive integer is in exactly one of the four sequences. The limiting densities of these four sequences are 4/9, 2/9, 2/9, and 1/9, respectively.
For A360395, u, v, u', v', are sequences obtained from the Thue-Morse sequence, A026430, as follows:
u = A026530 = (1,3,5,6,8,9,10, 12, ... ) = partial sums of A026430
u' = A356133 = (2,4,7,11,13,17, 20, ... ) = complement of u
v = u + 1 = A285954, except its initial 1
v' = complement of v.

Examples

			(1)  u ^ v = (3, 5, 8, 10, 12, 14, 16, 18, 21, 23, 26, 28, 30, 33, ...) =  A360394
(2)  u ^ v' = (1, 6, 9, 15, 19, 24, 27, 31, 36, 42, 45, 51, 55, 60, ...) =  A360395
(3)  u' ^ v = (7, 11, 17, 20, 25, 29, 32, 38, 43, 47, 53, 56, 62, ...) = A360396
(4)  u' ^ v' = (2, 4, 13, 22, 34, 40, 49, 58, 64, 76, 85, 94, 106, ...) = A360397
		

Crossrefs

Programs

  • Mathematica
    z = 400;
    u = Accumulate[1 + ThueMorse /@ Range[0, z]];   (* A026430 *)
    u1 = Complement[Range[Max[u]], u];  (* A356133 *)
    v = u + 2 ; (* A360392 *)
    v1 = Complement[Range[Max[v]], v];  (* A360393 *)
    Intersection[u, v]    (* A360394 *)
    Intersection[u, v1]   (* A360395 *)
    Intersection[u1, v]   (* A360396 *)
    Intersection[u1, v1]  (* A360397 *)

A360396 Intersection of A356133 and A360392.

Original entry on oeis.org

7, 11, 17, 20, 25, 29, 32, 38, 43, 47, 53, 56, 62, 67, 71, 74, 79, 83, 89, 92, 97, 101, 104, 110, 115, 119, 122, 127, 131, 137, 140, 146, 151, 155, 161, 164, 169, 173, 176, 182, 187, 191, 197, 200, 206, 211, 215, 218, 223, 227, 233, 236, 242, 247, 251, 257
Offset: 1

Views

Author

Clark Kimberling, Feb 05 2023

Keywords

Comments

This is the third of four sequences that partition the positive integers. Starting with a general overview, suppose that u = (u(n)) and v = (v(n)) are increasing sequences of positive integers. Let u' and v' be their complements, and assume that the following four sequences are infinite:
(1) u ^ v = intersection of u and v (in increasing order);
(2) u ^ v';
(3) u' ^ v;
(4) u' ^ v'.
Every positive integer is in exactly one of the four sequences. The limiting densities of these four sequences are 4/9, 2/9, 2/9, and 1/9, respectively.
For A360396, u, v, u', v', are sequences obtained from the Thue-Morse sequence, A026430, as follows:
u = A026530 = (1,3,5,6,8,9,10, 12, ... ) = partial sums of A026430
u' = A356133 = (2,4,7,11,13,17, 20, ... ) = complement of u
v = u + 1 = A285954, except its initial 1
v' = complement of v.

Examples

			(1)  u ^ v = (3, 5, 8, 10, 12, 14, 16, 18, 21, 23, 26, 28, 30, 33, ...) =  A360394
(2)  u ^ v' = (1, 6, 9, 15, 19, 24, 27, 31, 36, 42, 45, 51, 55, 60, ...) =  A360395
(3)  u' ^ v = (7, 11, 17, 20, 25, 29, 32, 38, 43, 47, 53, 56, 62, ...) = A360396
(4)  u' ^ v' = (2, 4, 13, 22, 34, 40, 49, 58, 64, 76, 85, 94, 106, ...) = A360397
		

Crossrefs

Programs

  • Mathematica
    z = 400;
    u = Accumulate[1 + ThueMorse /@ Range[0, z]];   (* A026430 *)
    u1 = Complement[Range[Max[u]], u];  (* A356133 *)
    v = u + 2 ; (* A360392 *)
    v1 = Complement[Range[Max[v]], v];  (* A360393 *)
    Intersection[u, v]    (* A360394 *)
    Intersection[u, v1]   (* A360395 *)
    Intersection[u1, v]   (* A360396 *)
    Intersection[u1, v1]  (* A360397 *)

A360399 a(n) = A026430(1 + A360393(n)).

Original entry on oeis.org

1, 3, 6, 9, 14, 19, 23, 28, 33, 36, 41, 46, 51, 54, 60, 63, 68, 73, 77, 82, 87, 90, 96, 99, 103, 109, 114, 117, 121, 128, 130, 136, 141, 144, 149, 154, 159, 162, 168, 171, 175, 181, 186, 189, 194, 199, 203, 209, 213, 216, 222, 225, 230, 235, 239, 245, 249
Offset: 1

Views

Author

Clark Kimberling, Feb 10 2023

Keywords

Comments

This is the second of four sequences that partition the positive integers. Suppose that u = (u(n)) and v = (v(n)) are increasing sequences of positive integers. Let u' and v' be their (increasing) complements, and consider these four sequences:
(1) u o v, defined by (u o v)(n) = u(v(n));
(2) u o v';
(3) u' o v;
(4) v' o u'.
Every positive integer is in exactly one of the four sequences. Their limiting densities are 4/9, 2/9, 2/9, 1/9 (and likewise for A360394-A360397 and A360402-A360405).

Examples

			(1)  u o v = (5, 8, 10, 12, 15, 16, 18, 21, 24, 26, 27, 30, 31, 35, 37, 39, ...) = A360398
(2)  u o v' = (1, 3, 6, 9, 14, 19, 23, 28, 33, 36, 41, 46, 51, 54, 60, 63, 68, ...) = A360399
(3)  u' o v = (7, 13, 20, 22, 29, 32, 34, 40, 47, 49, 53, 58, 62, 67, 74, 76, ...) = A360400
(4)  u' o v' = (2, 4, 11, 17, 25, 38, 43, 56, 64, 71, 79, 92, 101, 106, 119, ...) = A360401
		

Crossrefs

Cf. A026530, A356133, A360392, A360393, A360398, A286355, A286356, A360394 (intersections instead of results of composition), A360402-A360405.

Programs

  • Mathematica
    z = 2000;
    u = Accumulate[1 + ThueMorse /@ Range[0, 600]]; (* A026430 *)
    u1 = Complement[Range[Max[u]], u];  (* A356133 *)
    v = u + 2;  (* A360392 *)
    v1 = Complement[Range[Max[v]], v];    (* A360393 *)
    zz = 100;
    Table[u[[v[[n]]]], {n, 1, zz}]    (* A360398 *)
    Table[u[[v1[[n]]]], {n, 1, zz}]   (* A360399 *)
    Table[u1[[v[[n]]]], {n, 1, zz}]   (* A360400 *)
    Table[u1[[v1[[n]]]], {n, 1, zz}]  (* A360401 *)
Showing 1-10 of 13 results. Next