A356185 The difference between number of even and number of odd Grassmannian permutations of size n.
1, 1, 0, 1, 0, 3, 2, 9, 8, 23, 22, 53, 52, 115, 114, 241, 240, 495, 494, 1005, 1004, 2027, 2026, 4073, 4072, 8167, 8166, 16357, 16356, 32739, 32738, 65505, 65504, 131039, 131038, 262109, 262108, 524251, 524250, 1048537, 1048536, 2097111, 2097110, 4194261, 4194260
Offset: 0
Examples
For n=3, 123, 231, 312 are even Grassmann permutations, and 132, 213 are the odd ones. Hence a(3) = 1.
Links
- Juan B. Gil and Jessica A. Tomasko, Restricted Grassmannian permutations, arXiv:2112.03338 [math.CO], 2021.
- Juan B. Gil and Jessica A. Tomasko, Restricted Grassmannian permutations, Enum. Combin. Appl. 2 (2022), no. 4, Article #S4PP6.
- Index entries for linear recurrences with constant coefficients, signature (2,1,-4,2).
Crossrefs
Programs
-
Mathematica
Table[2^Floor[1 + (n - 1)/2] - n, {n, 1, 80}]
Comments