A356201 a(n) is the first component x of the distance vector (x,y), x >= y >= 0, between two nodes of an infinite square lattice of one-ohm resistors, such that the resistance R between the two nodes is as close as possible to n ohms, i.e., abs(R - n) is minimized. y is A356202(n).
0, 4, 106, 2384, 51196, 958170, 24341911, 636875169, 14536767750, 285039411789, 6322647312660, 202105291334913
Offset: 0
Examples
n x y R(x,y) - n 0 0 0 0 1 4 2 -8.076*10^(-3) 2 106 8 7.349*10^(-6) 3 2384 606 2.206*10^(-8) 4 51196 24881 -7.426*10^(-11) 5 958170 903855 7.396*10^(-16) 6 24341911 18345919 -7.814*10^(-16) 7 636875169 303176603 -3.017*10^(-19) 8 14536767750 7423167971 5.874*10^(-21) 9 285039411789 247828120179 -2.461*10^(-24) 10 6322647312660 6034957650107 -1.048*10^(-26) 11 202105291334913 7948827377158 1.795*10^(-29)
Links
- Hugo Pfoertner, PARI program for inverse problem, (2022). Finds the grid point [x,y] that leads to the best approximation of a given resistance distance R (ohms) between [0,0] and [x,y].
Crossrefs
Programs
-
PARI
\\ using the function Rsqlatt(R) from the linked program for (k=0, 11, print1(Rsqlatt(k)[1], ", ")) \\ Hugo Pfoertner, Sep 09 2022
Extensions
a(9)-a(11) from Hugo Pfoertner, Aug 22 2022
Comments