A356247 Denominator of the continued fraction 1/(2 - 3/(3 - 4/(4 - 5/(...(n-1) - n/(-1))))).
1, 5, 11, 19, 29, 41, 11, 71, 89, 109, 131, 31, 181, 19, 239, 271, 61, 31, 379, 419, 461, 101, 29, 599, 59, 701, 151, 811, 79, 929, 991, 211, 59, 41, 1259, 1, 281, 1481, 1559, 149, 1721, 1, 61, 1979, 2069, 2161, 1, 2351, 79, 2549, 241, 1, 2861, 2969, 3079, 3191
Offset: 2
Examples
For n=2, 1/(2 - 3) = -1, so a(2)=1. For n=3, 1/(2 - 3/(3 - 4)) = 1/5, so a(3)=5. For n=4, 1/(2 - 3/(3 - 4/(4 - 5))) = 7/11, so a(4)=11. For n=5, 1/(2 - 3/(3 - 4/(4 - 5/(5 - 6)))) = 23/19, so a(5)=19. For n=6, 1/(2 - 3/(3 - 4/(4 - 5/(5 - 6/(6 - 7))))) = 73/29, so a(6)=29. a(23) = a(79) = 23 + 79 - 1 = 101. a(26) = a(34) = gcd(26^2 - 26 -1, 34^2 - 34 - 1) = gcd(649, 1121) = 59.
Links
- Michael De Vlieger, Table of n, a(n) for n = 2..10001
- Mohammed Bouras, A new sequence of prime numbers, Romanian Math. Mag. (15 August 2022). See Table 2 p. 2.
- Mohammed Bouras, A New Sequence of Prime Numbers, EasyChair Preprint 8686, 2022.
- Mohammed Bouras, The Distribution Of Prime Numbers And Continued Fractions, (ppt) (2022).
- Benoit Cloitre, On the sequence A356247, 2025.
Programs
-
Mathematica
a[n_] := ContinuedFractionK[-i-1, If[i == n, 1, i+1], {i, 1, n}] // Denominator; Table[a[n], {n, 2, 100}] (* Jean-François Alcover, Aug 11 2022 *)
-
PARI
a(n) = if (n==1, 1, n--; my(v = vector(2*n, k, (k+4)\2)); my(q = 1/(v[2*n-1] - v[2*n])); forstep(k=2*n-3, 1, -2, q = v[k] - v[k+1]/q; ); denominator(1/q)); \\ Michel Marcus, Aug 07 2022
-
Python
from fractions import Fraction def A356247(n): k = -1 for i in range(n-1,1,-1): k = i-Fraction(i+1,k) return abs(k.numerator) # Chai Wah Wu, Aug 23 2022
Formula
a(n) = (n^2 - n - 1)/gcd(n^2 - n - 1, A356684(n)).
If conjecture 3 is true, then we have:
a(n) = a(m) = n + m - 1.
a(n) = a(m) = gcd(n^2 - n - 1, m^2 - m - 1).
a(n) = a(a(n) - n + 1).
Comments