cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A356417 Numbers whose reversal is a square.

Original entry on oeis.org

0, 1, 4, 9, 10, 18, 40, 46, 52, 61, 63, 90, 94, 100, 121, 144, 148, 163, 169, 180, 400, 423, 441, 460, 484, 487, 520, 522, 526, 610, 630, 652, 675, 676, 691, 900, 925, 927, 940, 961, 982, 1000, 1042, 1062, 1089, 1210, 1251, 1273, 1297, 1405, 1426, 1440, 1480
Offset: 1

Views

Author

Daniel Blam, Aug 06 2022

Keywords

Comments

Every power of 10 is a term in the sequence.
If k is in the sequence then so is 10*k. - David A. Corneth, Aug 06 2022
If all multiples of 10 were omitted, A074896 would result. - Jon E. Schoenfield, Aug 06 2022

Examples

			0 is a term, 0 -> 0 (0^2).
10 is a term, 10 -> 01 (leading zero is dropped) (1^2).
691 is a term, 691 -> 196 (14^2).
1800 is a term, 1800 -> 0081 (leading zeros are dropped) (9^2).
		

Crossrefs

Programs

  • Mathematica
    Select[Range[0, 1500], IntegerQ[Sqrt[IntegerReverse[#]]] &] (* Amiram Eldar, Aug 06 2022 *)
  • PARI
    isok(k) = issquare(fromdigits(Vecrev(digits(k)))); \\ Michel Marcus, Aug 06 2022
  • Python
    from sympy import integer_nthroot
    def ok(n):
        return integer_nthroot(int(str(n)[::-1]), 2)[1]
    print([k for k in range(1500) if ok(k)])
    
  • Python
    from math import isqrt
    from itertools import count, islice
    def A356417_gen(): # generator of terms
        yield 0
        for l in count(1):
            nlist = []
            for m in range(1,isqrt(10**l)+1):
                if m%10:
                    s = str(m**2)
                    nlist.append(int(s[::-1])*10**(l-len(s)))
            yield from sorted(nlist)
    A356417_list = list(islice(A356417_gen(),100)) # Chai Wah Wu, Aug 07 2022