cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Daniel Blam

Daniel Blam's wiki page.

Daniel Blam has authored 4 sequences.

A356498 Primes p such that 100*p + 11 is also prime.

Original entry on oeis.org

2, 3, 23, 41, 83, 101, 107, 113, 137, 179, 233, 239, 251, 281, 293, 353, 359, 401, 419, 479, 503, 557, 563, 569, 587, 683, 701, 743, 809, 839, 857, 863, 941, 953, 977, 1049, 1091, 1103, 1193, 1217, 1277, 1283, 1361, 1367, 1427, 1487, 1499, 1523, 1607, 1619, 1847, 1871, 1877, 1889, 1907, 1949, 1973
Offset: 1

Author

Daniel Blam, Aug 09 2022

Keywords

Comments

100*p + 11 has the effect of appending 11 to p.
Primes of the form 3*k + 1 are never in this sequence, as 100*(3*k + 1) + 11 can be simplified to 3*(100*k + 37).

Examples

			2 is a term, as 100*2 + 11 is 211, which are both prime.
101 is a term, as 100*101 + 11 is 10111 which are both prime.
		

Crossrefs

Cf. A000040, A002476 (primes of the form 3*k+1).
Similar to A023237.

Programs

  • Python
    from sympy import isprime
    print([k for k in range(2000) if isprime(100*k+11) and isprime(k)])

A356417 Numbers whose reversal is a square.

Original entry on oeis.org

0, 1, 4, 9, 10, 18, 40, 46, 52, 61, 63, 90, 94, 100, 121, 144, 148, 163, 169, 180, 400, 423, 441, 460, 484, 487, 520, 522, 526, 610, 630, 652, 675, 676, 691, 900, 925, 927, 940, 961, 982, 1000, 1042, 1062, 1089, 1210, 1251, 1273, 1297, 1405, 1426, 1440, 1480
Offset: 1

Author

Daniel Blam, Aug 06 2022

Keywords

Comments

Every power of 10 is a term in the sequence.
If k is in the sequence then so is 10*k. - David A. Corneth, Aug 06 2022
If all multiples of 10 were omitted, A074896 would result. - Jon E. Schoenfield, Aug 06 2022

Examples

			0 is a term, 0 -> 0 (0^2).
10 is a term, 10 -> 01 (leading zero is dropped) (1^2).
691 is a term, 691 -> 196 (14^2).
1800 is a term, 1800 -> 0081 (leading zeros are dropped) (9^2).
		

Crossrefs

Programs

  • Mathematica
    Select[Range[0, 1500], IntegerQ[Sqrt[IntegerReverse[#]]] &] (* Amiram Eldar, Aug 06 2022 *)
  • PARI
    isok(k) = issquare(fromdigits(Vecrev(digits(k)))); \\ Michel Marcus, Aug 06 2022
  • Python
    from sympy import integer_nthroot
    def ok(n):
        return integer_nthroot(int(str(n)[::-1]), 2)[1]
    print([k for k in range(1500) if ok(k)])
    
  • Python
    from math import isqrt
    from itertools import count, islice
    def A356417_gen(): # generator of terms
        yield 0
        for l in count(1):
            nlist = []
            for m in range(1,isqrt(10**l)+1):
                if m%10:
                    s = str(m**2)
                    nlist.append(int(s[::-1])*10**(l-len(s)))
            yield from sorted(nlist)
    A356417_list = list(islice(A356417_gen(),100)) # Chai Wah Wu, Aug 07 2022
    

A349460 Squares composed of digits {0,2,4}.

Original entry on oeis.org

0, 4, 400, 40000, 2244004, 4000000, 42224004, 224400400, 400000000, 424442404, 4222400400, 22200404004, 22440040000, 40000000000, 42444240400, 422240040000, 2220040400400, 2244004000000, 4000000000000, 4024044024004, 4244424040000, 40244204444224, 42224004000000
Offset: 1

Author

Daniel Blam, Nov 18 2021

Keywords

Comments

From Marius A. Burtea, Nov 18 2021: (Start)
The sequence is infinite because if m > 0 is a term, then 100*m is also a term.
Also, the squares of the numbers 20602, 2006002, 200060002, ..., (2*10^(2*k) + 6*10^k + 2), k >= 2, are 424442404, 4024044024004, 40024004400240004, 400024000440002400004, ... and have only the digits 0, 2 and 4 and are not divisible by 100. (End)

Crossrefs

Subsequence of A000290 and A030098.

Programs

  • Magma
    [n : n in [s*s:s in [1..1500000]]|Set(Intseq(n)) subset {0,2,4}]; // Marius A. Burtea, Nov 18 2021
    
  • Mathematica
    Select[Range[0, 10^7, 2]^2, AllTrue[IntegerDigits[#], MemberQ[{0, 2, 4}, #1] &] &] (* Amiram Eldar, Nov 18 2021 *)
  • Python
    from itertools import islice, count
    def A349460(): return filter(lambda n: set(str(n)) <= {'0','2','4'},(n*n for n in count(0)))
    A349460_list = list(islice(A349460(),20)) # Chai Wah Wu, Nov 19 2021

A342975 Cubes composed of digits {0, 1, 3}.

Original entry on oeis.org

0, 1, 1000, 1331, 1000000, 1030301, 1331000, 1000000000, 1003003001, 1030301000, 1331000000, 1000000000000, 1000300030001, 1003003001000, 1030301000000, 1331000000000, 1000000000000000, 1000030000300001, 1000300030001000, 1003003001000000, 1030301000000000, 1331000000000000
Offset: 1

Author

Daniel Blam, Nov 19 2021

Keywords

Comments

This sequence is infinite, because if m > 0 is a term, 1000*m will also be a term.

Crossrefs

Subsequence of A000578 and A043681.

Programs

  • Mathematica
    Select[Range[0, 110000]^3, AllTrue[IntegerDigits[#], MemberQ[{0, 1, 3}, #1] &] &] (* Amiram Eldar, Nov 19 2021 *)
  • Python
    from itertools import islice, count
    def A342975(): return filter(lambda n: set(str(n)) <= {'0','1','3'},(n**3 for n in count(0)))
    A342975_list = list(islice(A342975(),20)) # Chai Wah Wu, Nov 19 2021