A189759 Numbers pqr such that pq + pr + qr is prime, where p, q, and r are primes.
30, 42, 66, 70, 78, 105, 114, 130, 154, 165, 174, 182, 222, 231, 238, 246, 255, 273, 282, 285, 286, 310, 318, 345, 357, 366, 370, 385, 399, 418, 430, 434, 442, 455, 465, 474, 483, 494, 498, 518, 555, 561, 574, 582, 595, 602, 609, 618, 642, 645, 651, 663, 665
Offset: 1
Keywords
Links
- T. D. Noe, Table of n, a(n) for n = 1..1000
- Victor Ufnarovski and Bo Ahlander, How to Differentiate a Number, J. Integer Seqs., Vol. 6, 2003.
Programs
-
Mathematica
pqr[nn_] := Module[{p=Prime[Range[PrimePi[nn/6]+1]],i,j,k,n,prod}, Sort[Reap[i=0; While[i++; p[[i]]p[[i+1]]p[[i+2]] <= nn, j=i; While[j++; p[[i]]p[[j]]p[[j+1]] <= nn, k=j; While[k++; prod=p[[i]]p[[j]]p[[k]]; prod <= nn, n=p[[i]]p[[j]]+p[[i]]p[[k]]+p[[j]]p[[k]]; If[PrimeQ[n], Sow[prod]]]]]][[2,1]]]]; pqr[1000] Take[Union[Times@@@Select[Subsets[Prime[Range[30]],{3}],PrimeQ[ Total[ Times@@@Subsets[#,{2}]]]&]],60](* Harvey P. Dale, Dec 29 2011 *)
Comments