cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A356644 Number of vertex cuts in the n-antiprism graph.

Original entry on oeis.org

0, 0, 3, 48, 360, 2057, 10276, 47552, 209871, 898168, 3765080, 15560725, 63681228, 258826128, 1046920155, 4220390592, 16973219016, 68148598817, 273305152756, 1095189435488, 4386195036135, 17559755662600, 70280167711928, 281233465458733, 1125242449638300, 4501812479503152
Offset: 1

Views

Author

Eric W. Weisstein, Aug 19 2022

Keywords

Comments

Sequence extended to n = 1 using formula.

Crossrefs

Cf. A286183.

Programs

  • Mathematica
    Table[4^n + 2 n - LucasL[2 n] - 2 n Fibonacci[2 n] - 1, {n, 20}]
    LinearRecurrence[{12, -56, 130, -160, 104, -33, 4}, {0, 0, 3, 48, 360, 2057, 10276}, 20]
    CoefficientList[Series[x^2 (-3 - 12 x + 48 x^2 - 35 x^3 + 8 x^4)/((-1 + x)^2 (-1 + 4 x) (1 - 3 x + x^2)^2), {x, 0, 20}], x]

Formula

a(n) = 2^(2*n) - A286183(n)-1. - Pontus von Brömssen, Aug 21 2022
a(n) = 4^n + 2*n - LucasL(2*n) - 2*n*Fibonacci(2 n) - 1. - Eric W. Weisstein, Aug 30 2022
a(n) = 12*a(n-1) - 56*a(n-2) + 130*a(n-3) -160*a(n-4) + 104*a(n-5) - 33*a(n-6) + 4*a(n-7). - Eric W. Weisstein, Aug 30 2022
G.f.: x^3*(-3-12*x+48*x^2-35*x^3+8*x^4)/((-1+4*x)*(-1+4*x-4*x^2+x^3)^2). - Eric W. Weisstein, Aug 30 2022

Extensions

a(13)-a(26) (based on A286183) from Pontus von Brömssen, Aug 21 2022