cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A179145 Numbers n such that Mordell's equation y^2 = x^3 + n has exactly 1 integral solution.

Original entry on oeis.org

27, 125, 216, 1728, 2197, 3375, 4913, 6859, 8000, 13824, 19683, 24389, 27000, 29791, 59319, 68921, 74088, 79507, 91125, 103823, 110592, 132651, 140608, 148877, 157464, 166375, 195112, 205379, 216000, 226981, 238328, 287496, 300763, 314432
Offset: 1

Views

Author

Artur Jasinski, Jun 30 2010

Keywords

Crossrefs

Complement of A356703 among the positive cubes.
Cf. also A179163, A179419.

Programs

  • Mathematica
    (* Assuming every term is a cube *) xmax = 2000; r[n_] := Reap[ Do[ rpos = Reduce[y^2 == x^3 + n, y, Integers]; If[rpos =!= False, Sow[rpos]]; rneg = Reduce[y^2 == (-x)^3 + n, y, Integers]; If[rneg =!= False, Sow[rneg]], {x, 1, xmax}]]; ok[n_] := Which[ rn = r[n]; rn[[2]] === {}, False, Length[rn[[2]]] > 1, False, ! FreeQ[rn[[2, 1]], Or], False, True, True]; ok[n_ /; !IntegerQ[n^(1/3)]] = False; ok[1]=False; A179145 = Reap[ Do[ If[ok[n], Print[n]; Sow[n]], {n, 1, 320000}]][[2, 1]] (* Jean-François Alcover, Apr 12 2012 *)

Formula

a(n) = A356709(n)^3. - Jianing Song, Aug 24 2022

Extensions

Edited and extended by Ray Chandler, Jul 11 2010

A356709 Numbers k such that Mordell's equation y^2 = x^3 + k^3 has exactly 1 integral solution.

Original entry on oeis.org

3, 5, 6, 12, 13, 15, 17, 19, 20, 24, 27, 29, 30, 31, 39, 41, 42, 43, 45, 47, 48, 51, 52, 53, 54, 55, 58, 59, 60, 61, 62, 66, 67, 68, 69, 73, 75, 76, 77, 79, 80, 82, 83, 85, 87, 89, 93, 94, 96, 97, 101, 102, 103, 106, 107, 108, 109, 111, 113, 115, 116, 117, 118, 119
Offset: 1

Views

Author

Jianing Song, Aug 23 2022

Keywords

Comments

Numbers k such that Mordell's equation y^2 = x^3 + k^3 has no solution other than the trivial solution (-k,0).
Cube root of A179145.

Examples

			3 is a term since the equation y^2 = x^3 + 3^3 has no solution other than (-3,0).
		

Crossrefs

Indices of 1 in A356706, of 0 in A356707, and of 1 in A356708.
Complement of A356720.
Cf. also A356713, A228948.

A103254 Positive integers x such that there exist positive integers y and z satisfying x^3 + y^3 = z^2.

Original entry on oeis.org

1, 2, 4, 7, 8, 9, 10, 11, 14, 16, 18, 21, 22, 23, 25, 26, 28, 32, 33, 34, 35, 36, 37, 38, 40, 44, 46, 49, 50, 56, 57, 63, 64, 65, 70, 72, 78, 81, 84, 86, 88, 90, 91, 92, 95, 98, 99, 100, 104, 105, 110, 112, 114, 121, 122, 126, 128, 129, 130, 132, 136, 140, 144, 148, 152, 154, 158, 160, 162, 169, 170, 175, 176, 177, 183, 184, 189, 190, 193, 196, 198, 200
Offset: 1

Views

Author

Cino Hilliard, Mar 20 2005

Keywords

Comments

A001105 is a subset (excluding 0), since (x, y, z) = (A001105(k), A001105(k), A033430(k)) satisfies x^3 + y^3 = z^2. - R. J. Mathar, Sep 11 2006
A parametric solution: {x,y,z} = {g*(4*e + g)*(4*e^2 + 8*e*g + g^2), 2*g*(4*e + g)*(-2*e^2 +2*e*g + g^2), 3*g^2*(4*e + g)^2*(4*e^2 + 2*e*g + g^2)}, provided (-2*e^2 +2*e*g + g^2) > 0. - James Mc Laughlin, Jan 27 2007
Allowing y = 0 would give the same sequence, since x^3 = z^2 implies x is a square, and all squares are terms since (t^2)^3 + (2*t^2)^3 = (3*t^3)^2. On the other hand, allowing y to be negative would introduce new terms: 71, 74, and 155 would be terms since 71^3 + (-23)^3 = 588^2, 74^3 + (-47)^3 = 549^2, and 155^3 + (-31)^3 = 1922^2. See A356720. - Jianing Song, Aug 24 2022

Examples

			x=7, y=21, 7^3 + 21^3 = 98^2. 7 is the 4th term in the list.
Other solutions are (x, y, z)=(1, 2, 3), (4, 8, 24), (7, 21, 98), (9, 18, 81), (10, 65, 525), (11, 37, 228), (14, 70, 588), (16, 32, 192), (21, 7, 98), (22, 26, 168), (23, 1177, 40380), ...
		

Crossrefs

See A103255 for another version.

Programs

  • Magma
    [ k : k in [1..200] | exists{P : P in IntegralPoints(EllipticCurve([0,k^3])) | P[1] gt 0 and P[2] ne 0 } ]; // Geoff Bailey, Jan 28 2007

Extensions

Recomputed and extended to 48 terms by Geoff Bailey (geoff(AT)maths.usyd.edu.au) using Magma, Jan 28 2007
Terms 104..200 added by Joerg Arndt, Sep 29 2012

A356713 Numbers k such that Mordell's equation y^2 = x^3 - k^3 has exactly 1 integral solution.

Original entry on oeis.org

1, 2, 3, 4, 5, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 25, 27, 29, 30, 32, 33, 34, 35, 36, 37, 39, 40, 41, 43, 45, 46, 48, 49, 50, 51, 52, 53, 56, 57, 58, 59, 60, 62, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88
Offset: 1

Views

Author

Jianing Song, Aug 23 2022

Keywords

Comments

Numbers k such that Mordell's equation y^2 = x^3 - k^3 has no solution other than the trivial solution (k,0).
Cube root of A179163.
Contains all squares: suppose that y^2 = x^3 - t^6, then (y/t^3)^2 = (x/t^2)^3 - 1. The elliptic curve Y^2 = X^3 - 1 has rank 0 and the only rational points on it are (1,0), so y^2 = x^3 - t^6 has only one solution (t^2,0).

Crossrefs

Cf. A081120, A179163, A356709, A356720. Complement of A228948.

Formula

1 is a term since the equation y^2 = x^3 - 1^3 has no solution other than (1,0).

A228948 Numbers n such that n^3 + k^2 = m^3 for some k>0, m>0.

Original entry on oeis.org

6, 7, 11, 23, 24, 26, 28, 31, 38, 42, 44, 47, 54, 55, 61, 63, 84, 91, 92, 95, 96, 99, 104, 110, 111, 112, 118, 119, 124, 138
Offset: 1

Views

Author

M. F. Hasler, Oct 05 2013

Keywords

Comments

Cube root of perfect cubes in A087285 or in A229618 are in the present sequence, but this does not yield all terms, because these sequences require k^2 to be the largest square < m^3.
Numbers k such that Mordell's equation y^2 = x^3 - k^3 has more than 1 integral solution. (Note that it is necessary that x is positive.) In other words, numbers k such that Mordell's equation y^2 = x^3 - k^3 has solutions other than the trivial solution (k,0). - Jianing Song, Sep 24 2022

Examples

			6 is a term since the equation y^2 = x^3 - 6^3 has 5 solutions (6,0), (10,+-28), and (33,+-189). - _Jianing Song_, Sep 24 2022
		

Crossrefs

Cube root of A179419.
Cf. A356709, A356720. Complement of A356713.

Extensions

More terms added by Jianing Song, Sep 24 2022 based on A179419.

A356703 Numbers k such that Mordell elliptic curve y^2 = x^3 + k has a number of integral points that is both odd and > 1.

Original entry on oeis.org

1, 8, 64, 343, 512, 729, 1000, 1331, 2744, 4096, 5832, 9261, 10648, 12167, 15625, 17576, 21952, 32768, 35937, 39304, 42875, 46656, 50653, 54872, 64000, 85184, 97336, 117649, 125000, 175616, 185193, 250047, 262144, 274625, 343000, 357911, 373248, 405224, 474552, 531441, 592704, 636056
Offset: 1

Views

Author

Jianing Song, Aug 23 2022

Keywords

Comments

Cubes k such that y^2 = x^3 + k has a solution other than (-k^(1/3), 0).
Contains all sixth powers since A179149 does.

Examples

			512 is a term since the equation y^2 = x^3 + 512 has 9 integral solutions (-8,0), (-7,+-13), (4,+-24), (8,+-32), and (184,+-2496).
		

Crossrefs

Complement of A179145 among the positive cubes.

Formula

a(n) = A356720(n)^3.
Showing 1-6 of 6 results.