A179145 Numbers n such that Mordell's equation y^2 = x^3 + n has exactly 1 integral solution.
27, 125, 216, 1728, 2197, 3375, 4913, 6859, 8000, 13824, 19683, 24389, 27000, 29791, 59319, 68921, 74088, 79507, 91125, 103823, 110592, 132651, 140608, 148877, 157464, 166375, 195112, 205379, 216000, 226981, 238328, 287496, 300763, 314432
Offset: 1
Keywords
Links
- Jianing Song, Table of n, a(n) for n = 1..115 (using the b-file of A356720, which is based on the data from A103254)
- J. Gebel, Integer points on Mordell curves [Cached copy, after the original web site tnt.math.se.tmu.ac.jp was shut down in 2017]
Crossrefs
Programs
-
Mathematica
(* Assuming every term is a cube *) xmax = 2000; r[n_] := Reap[ Do[ rpos = Reduce[y^2 == x^3 + n, y, Integers]; If[rpos =!= False, Sow[rpos]]; rneg = Reduce[y^2 == (-x)^3 + n, y, Integers]; If[rneg =!= False, Sow[rneg]], {x, 1, xmax}]]; ok[n_] := Which[ rn = r[n]; rn[[2]] === {}, False, Length[rn[[2]]] > 1, False, ! FreeQ[rn[[2, 1]], Or], False, True, True]; ok[n_ /; !IntegerQ[n^(1/3)]] = False; ok[1]=False; A179145 = Reap[ Do[ If[ok[n], Print[n]; Sow[n]], {n, 1, 320000}]][[2, 1]] (* Jean-François Alcover, Apr 12 2012 *)
Formula
a(n) = A356709(n)^3. - Jianing Song, Aug 24 2022
Extensions
Edited and extended by Ray Chandler, Jul 11 2010
Comments