A349559
E.g.f. satisfies A(x) = 1/(1 - x*A(x))^x.
Original entry on oeis.org
1, 0, 2, 3, 44, 270, 3714, 44940, 746528, 13149864, 271954440, 6154715160, 155055594792, 4254730262640, 127019898548256, 4088313657038520, 141301521555548160, 5216698433745207360, 204946906542573645504, 8536144551987171202560
Offset: 0
-
a:= n-> n!*coeff(series(RootOf(1/(1-x*A)^x-A, A), x, n+1), x, n):
seq(a(n), n=0..20); # Alois P. Heinz, Nov 22 2021
-
nmax = 20; A[] = 0; Do[A[x] = 1/(1 - x*A[x])^x + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x] * Range[0, nmax]! (* Vaclav Kotesovec, Nov 22 2021 *)
-
my(A=1,n=22); for(i=1, n, A=(1-x*A)^(-x+x*O(x^n))); Vec(serlaplace(A))
-
a(n) = n!*sum(k=0, n\2, (n-k+1)^(k-1)*abs(stirling(n-k, k, 1))/(n-k)!); \\ Seiichi Manyama, Aug 27 2022
A356787
E.g.f. satisfies A(x) = 1/(1 - x * A(x))^(x * A(x)^3).
Original entry on oeis.org
1, 0, 2, 3, 116, 630, 24054, 273000, 11105072, 207213552, 9175467960, 245785969440, 11954556125544, 421832039016960, 22609694372667024, 991695134898861120, 58565049582761702400, 3065736317041568378880, 199024242549235933723200
Offset: 0
-
a(n) = n!*sum(k=0, n\2, (n+2*k+1)^(k-1)*abs(stirling(n-k, k, 1))/(n-k)!);
A356795
E.g.f. satisfies A(x) = 1/(1 - x)^(x * A(x)^2).
Original entry on oeis.org
1, 0, 2, 3, 68, 330, 7674, 73080, 1883440, 28281960, 818625960, 17120406600, 557507325000, 15014517495120, 548643259812816, 18056683281775320, 736892260092195840, 28579282973977498560, 1295028345251832359616, 57666859088090317591680
Offset: 0
-
a(n) = n!*sum(k=0, n\2, (2*k+1)^(k-1)*abs(stirling(n-k, k, 1))/(n-k)!);
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, (2*k+1)^(k-1)*(-x*log(1-x))^k/k!)))
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(-lambertw(2*x*log(1-x))/2)))
-
my(N=20, x='x+O('x^N)); Vec(serlaplace((lambertw(2*x*log(1-x))/(2*x*log(1-x)))^(1/2)))
A356884
E.g.f. satisfies A(x)^A(x) = 1/(1 - x*A(x))^x.
Original entry on oeis.org
1, 0, 2, 3, 20, 150, 1254, 14280, 190000, 2863728, 49465080, 954312480, 20303200488, 473604468480, 12007399511184, 328671680500800, 9663415159357440, 303695188102656000, 10159173955921651776, 360424299614544829440, 13517056067747847719040
Offset: 0
-
a(n) = n!*sum(k=0, n\2, (n-2*k+1)^(k-1)*abs(stirling(n-k, k, 1))/(n-k)!);
A356885
E.g.f. satisfies A(x)^(A(x)^2) = 1/(1 - x*A(x))^x.
Original entry on oeis.org
1, 0, 2, 3, -4, 30, 954, 6300, 6432, 424872, 18273960, 260682840, 1754408424, 47063118960, 2314149100704, 54798086299320, 773632032345600, 20746972036284480, 1072205580591921600, 36098491880448944640, 816375193722964932480, 25160238159364392336000
Offset: 0
-
a(n) = n!*sum(k=0, n\2, (n-3*k+1)^(k-1)*abs(stirling(n-k, k, 1))/(n-k)!);
A371146
E.g.f. satisfies A(x) = 1/(1 - x*A(x)^2)^(x*A(x)^2).
Original entry on oeis.org
1, 0, 2, 3, 116, 690, 24714, 315840, 11919088, 250812072, 10389272040, 310700914920, 14351129171400, 557402214180240, 28831564284582864, 1372162923004025880, 79345973798740154880, 4450055092134985771200, 286324089075857021558976
Offset: 0
-
a(n) = n!*sum(k=0, n\2, (2*n+1)^(k-1)*abs(stirling(n-k, k, 1))/(n-k)!);
Showing 1-6 of 6 results.