cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A356829 Number of vertex cuts in the n-Möbius ladder.

Original entry on oeis.org

0, 0, 8, 82, 512, 2644, 12364, 54598, 232772, 970520, 3988624, 16239066, 65709256, 264814140, 1064414100, 4271035662, 17118683020, 68563527616, 274481537112, 1098506723042, 4395504614544, 17585769696164, 70352578566620, 281434319454038, 1125797816327892
Offset: 1

Views

Author

Eric W. Weisstein, Aug 30 2022

Keywords

Comments

Sequence extended to n = 1 using formula.

Crossrefs

Cf. A286185.

Programs

  • Mathematica
    Table[4^n + n - LucasL[n, 2] - 3 n Fibonacci[n, 2], {n, 20}]
    LinearRecurrence[{10, -35, 48, -11, -22, 7, 4}, {0, 0, 8, 82, 512, 2644, 12364}, 20]
    CoefficientList[Series[2 x^2 (-4 - x + 14 x^2 - 5 x^3 + 2 x^4)/((-1 + x)^2 (-1 + 4 x) (-1 + 2 x + x^2)^2), {x, 0, 20}], x]

Formula

a(n) = 2^(2*n) - A286185(n) - 1. - Pontus von Brömssen, Aug 30 2022
a(n) = 4^n + n - LucasL(n, 2) - 3*n*Fibonacci(n, 2).
a(n) = 10*a(n-1) - 35*a(n-2) + 48*a(n-3) - 11*a(n-4) - 22*a(n-5) + 7*a(n-6) + 4*a(n-7).
G.f.: 2*x^3*(-4-x+14*x^2-5*x^3+2*x^4)/((-1+x)^2*(-1+4*x)*(-1+2*x+x^2)^2).

Extensions

More terms from Pontus von Brömssen, Aug 30 2022