0, 1, 1, 1, 3, 2, 2, 4, 4, 3, 3, 7, 6, 6, 4, 5, 11, 10, 9, 8, 5, 8, 18, 16, 15, 12, 9, 6, 13, 29, 26, 24, 20, 14, 11, 7, 21, 47, 42, 39, 32, 23, 17, 12, 8, 34, 76, 68, 63, 52, 37, 28, 19, 14, 9, 55, 123, 110, 102, 84, 60, 45, 31, 22, 16, 10, 89, 199, 178, 165, 136, 97, 73, 50, 36, 25, 17, 11
Offset: 1
The extended Wythoff array is the Wythoff array with two extra columns, giving the row number n and A000201(n), separated from the main array by a vertical bar:
0 1 | 1 2 3 5 8 13 21 34 55 89 144 ...
1 3 | 4 7 11 18 29 47 76 123 199 322 521 ...
2 4 | 6 10 16 26 42 68 110 178 288 466 754 ...
3 6 | 9 15 24 39 63 102 165 267 432 699 1131 ...
4 8 | 12 20 32 52 84 136 220 356 576 932 1508 ...
5 9 | 14 23 37 60 97 157 254 411 665 1076 1741 ...
6 11 | 17 28 45 73 118 191 309 500 809 1309 2118 ...
7 12 | 19 31 50 81 131 212 343 555 898 1453 2351 ...
8 14 | 22 36 58 94 152 246 398 644 1042 1686 2728 ...
9 16 | 25 41 66 107 173 280 453 733 1186 1919 3105 ...
10 17 | 27 44 71 115 186 301 487 788 1275 2063 3338 ...
11 19 | 30 49 79 ...
12 21 | 33 54 87 ...
13 22 | 35 57 92 ...
14 24 | 38 62 ...
15 25 | 40 65 ...
16 27 | 43 70 ...
17 29 | 46 75 ...
18 30 | 48 78 ...
19 32 | 51 83 ...
20 33 | 53 86 ...
21 35 | 56 91 ...
22 37 | 59 96 ...
23 38 | 61 99 ...
24 40 | 64 ...
25 42 | 67 ...
26 43 | 69 ...
27 45 | 72 ...
28 46 | 74 ...
29 48 | 77 ...
30 50 | 80 ...
31 51 | 82 ...
32 53 | 85 ...
33 55 | 88 ...
34 56 | 90 ...
35 58 | 93 ...
36 59 | 95 ...
37 61 | 98 ...
38 63 | ...
...
From _Peter Munn_, Sep 12 2022: (Start)
In the table below, the array terms are shown in the small box at the bottom right of the cells. At the top of each cell is shown a pattern of Fibonacci terms, with "*" indicating a Fibonacci term that appears below it. Those Fibonacci terms sum to the array term. The pattern never includes "**", which would indicate 2 consecutive Fibonacci terms. Note that a Fibonacci term shown as "1" in the 2nd column is F_1, so it may accompany "2", which is F_3. In other columns a Fibonacci term shown as "1" is F_2 and may not accompany "2".
+----------+-----------+------------+------------+------------+
| * | * | * | * | * |
| 0 __| 1 ___| 1 ___| 2 ___| 3 ___|
| |0 | | 1 | | 1 | | 2 | | 3 |
|----------+-----------+------------+------------+------------|
| * * | * * | * * | * * | * * |
| 0 __| 1 ___| 1 ___| 2 ___| 3 ___|
| 1 |1 | 2 | 3 | 3 | 4 | 5 | 7 | 8 |11 |
|----------+-----------+------------+------------+------------|
| * * | * * | * * | * * | * * |
| 2 0 __| 3 1 ___| 5 1 ___| 8 2 ___| 13 3 ___|
| |2 | | 4 | | 6 | |10 | |16 |
|----------+-----------+------------+------------+------------|
| * * | * * | * * | * * | * * |
| 0 __| 1 ___| 1 ___| 2 ___| 3 ___|
| 3 |3 | 5 | 6 | 8 | 9 | 13 |15 | 21 |24 |
|----------+-----------+------------+------------+------------|
| * * * | * * * | * * * | * * * | * * * |
| 0 | 1 | 1 | 2 | 3 |
| 1 __| 2 ___| 3 ___| 5 ___| 8 ___|
| 3 |4 | 5 | 8 | 8 |12 | 13 |20 | 21 |32 |
|----------+-----------+------------+------------+------------|
| * * | * * | * * | * * | * * |
| 0 __| 1 ___| 1 ___| 2 ___| 3 ___|
| 5 |5 | 8 | 9 | 13 |14 | 21 |23 | 34 |37 |
|----------+-----------+------------+------------+------------|
| * * * | * * * | * * * | * * * | * * * |
| 0 __| 1 ___| 1 ___| 2 ___| 3 ___|
| 5 1 |6 | 8 2 |11 | 13 3 |17 | 21 5 |28 | 34 8 |45 |
|----------+-----------+------------+------------+------------|
| * * * | * * * | * * * | * * * | * * * |
| 2 0 __| 3 1 ___| 5 1 ___| 8 2 ___| 13 3 ___|
| 5 |7 | 8 |12 | 13 |19 | 21 |31 | 34 |50 |
+----------+-----------+------------+------------+------------+
If we replace the Fibonacci terms 0, 1, 1, 2, 3, 5, ... in the main part of the cells with the powers of 2 (1, 2, 4, ...) the sums in the small boxes become the terms of A356875. From this may be seen a relationship to A054582.
- - - - -
Each row of the extended Wythoff array satisfies the Fibonacci recurrence, and may be further extended to the left using this recurrence backwards:
... -1 1 0 1 | 1 2 3 5 ...
... -1 2 1 3 | 4 7 11 18 ...
... 0 2 2 4 | 6 10 16 26 ...
... 0 3 3 6 | 9 15 24 39 ...
... 0 4 4 8 | 12 20 32 52 ...
... 1 4 5 9 | 14 23 37 60 ...
... 1 5 6 11 | 17 28 45 73 ...
... 2 5 7 12 | 19 31 50 81 ...
... 2 6 8 14 | 22 36 58 94 ...
...
... 5 10 15 25 | 40 65 105 170 ...
...
Note that multiples (*2, *3 and *4) of the top (Fibonacci sequence) row appear a little below, but shifted 2 columns to the left. Larger multiples appear further down and shifted further to the left, starting with row 15, where the terms are 5 times those in the top row and shifted 4 columns leftwards.
(End)
Comments