A356880 Squares that can be expressed as the sum of two powers of two (2^x + 2^y).
4, 9, 16, 36, 64, 144, 256, 576, 1024, 2304, 4096, 9216, 16384, 36864, 65536, 147456, 262144, 589824, 1048576, 2359296, 4194304, 9437184, 16777216, 37748736, 67108864, 150994944, 268435456, 603979776, 1073741824, 2415919104, 4294967296, 9663676416, 17179869184
Offset: 1
Examples
2^4 + 2^7 = 144, a square, thus 144 is a term.
Links
- Index entries for linear recurrences with constant coefficients, signature (0,4).
Crossrefs
Programs
-
Maple
seq(`if`(n::even, 9*2^(n-2), 2^(n+1)),n=1..50); # Robert Israel, Sep 15 2022
-
Mathematica
Select[Range[2, 2^17]^2, DigitCount[#, 2, 1] <= 2 &] (* Amiram Eldar, Sep 03 2022 *)
-
PARI
a(n) = if (n%2, 2^(n+1), 9*2^(n-2)); \\ Michel Marcus, Sep 15 2022
-
Python
def A356880(n): if n % 2 == 0: return 9*2**(n-2) else: return 2**(n+1)
Formula
a(n) = A029744(n+1)^2.
a(n) = 9 * 2^(n-2) if n is even (see A002063).
a(n) = 2^(n+1) if n is odd (see A000302).
From Stefano Spezia, Sep 09 2022: (Start)
G.f.: x*(4 + 9*x)/(1 - 4*x^2).
E.g.f.: (9*(cosh(2*x) - 1) + 8*sinh(2*x))/4. (End)
Comments