cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A356880 Squares that can be expressed as the sum of two powers of two (2^x + 2^y).

Original entry on oeis.org

4, 9, 16, 36, 64, 144, 256, 576, 1024, 2304, 4096, 9216, 16384, 36864, 65536, 147456, 262144, 589824, 1048576, 2359296, 4194304, 9437184, 16777216, 37748736, 67108864, 150994944, 268435456, 603979776, 1073741824, 2415919104, 4294967296, 9663676416, 17179869184
Offset: 1

Views

Author

Karl-Heinz Hofmann, Sep 02 2022

Keywords

Comments

If x is even, y = x + 3; if x is odd, y = x.
Proof for odd x: (2^odd + 2^odd) = 2^(odd + 1) = 2^even --> must be a square.
Proof for even x: 2^even + 2^(even + 3) = 1*(2^even) + (2^even * 2^3) = 1*(2^even) + (2^even * 8) = 1*(2^even) + 8*(2^even) = 9*(2^even); since 9 is a square and 2^even is a square, the multiplication result must be a square too.
And 9 is the only square that can be written as 1 + a power of 2.
Note that a(n) = A272711(n+1) for n=1..23, but beyond it differs more and more.

Examples

			2^4 + 2^7 = 144, a square, thus 144 is a term.
		

Crossrefs

Intersection of A000290 and A048645\{1}.
Cf. A272711, A270473 (squares that can be expressed as 3^x + 3^y).
Cf. A220221.

Programs

  • Maple
    seq(`if`(n::even, 9*2^(n-2), 2^(n+1)),n=1..50); # Robert Israel, Sep 15 2022
  • Mathematica
    Select[Range[2, 2^17]^2, DigitCount[#, 2, 1] <= 2 &] (* Amiram Eldar, Sep 03 2022 *)
  • PARI
    a(n) = if (n%2, 2^(n+1), 9*2^(n-2)); \\ Michel Marcus, Sep 15 2022
  • Python
    def A356880(n):
        if n % 2 == 0: return 9*2**(n-2)
        else: return 2**(n+1)
    

Formula

a(n) = A029744(n+1)^2.
a(n) = 9 * 2^(n-2) if n is even (see A002063).
a(n) = 2^(n+1) if n is odd (see A000302).
From Stefano Spezia, Sep 09 2022: (Start)
G.f.: x*(4 + 9*x)/(1 - 4*x^2).
E.g.f.: (9*(cosh(2*x) - 1) + 8*sinh(2*x))/4. (End)