cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A357042 The sum of the numbers of the central diamond of the multiplication table [1..k] X [1..k] for k=2*n-1.

Original entry on oeis.org

1, 20, 117, 400, 1025, 2196, 4165, 7232, 11745, 18100, 26741, 38160, 52897, 71540, 94725, 123136, 157505, 198612, 247285, 304400, 370881, 447700, 535877, 636480, 750625, 879476, 1024245, 1186192, 1366625, 1566900, 1788421, 2032640, 2301057, 2595220, 2916725, 3267216, 3648385
Offset: 1

Views

Author

Nicolay Avilov, Sep 18 2022

Keywords

Comments

a(n) is the sum of the elements of the multiplication table, forming the maximum diamond in its center.

Examples

			In the multiplication table [1..3] X [1..3]: a(2) = 2+2+4+6+6 = 20;
In the multiplication table [1..5] X [1..5]: a(3) = 3+4+3+6+6+8+9+8+12+12+15+16+15 = 117.
For n=3, the multiplication table [1..5] X [1..5] and the terms summed are
  *   1  2  3  4  5
   -----------------
  1|        3
  2|     4  6  8
  3|  3  6  9 12 15
  4|     8 12 16
  5|       15
		

Crossrefs

Programs

  • Mathematica
    A357042[n_] := n^2*(2*(n-1)*n + 1); Array[A357042, 50] (* or *)
    LinearRecurrence[{5, -10, 10, -5, 1}, {1, 20, 117, 400, 1025}, 50] (* Paolo Xausa, Oct 03 2024 *)

Formula

a(n) = n^2*(2*n^2 - 2*n + 1).
a(n) = 2*A000583(n) - A015237(n).
From Stefano Spezia, Sep 19 2022: (Start)
G.f.: x*(1 + 15*x + 27*x^2 + 5*x^3)/(1 - x)^5.
a(n) = A000290(n)*A001844(n-1). (End)