cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A277489 Expansion of e.g.f. -LambertW(-log(1+x)).

Original entry on oeis.org

0, 1, 1, 5, 26, 224, 2244, 28496, 417976, 7122384, 136770960, 2937770472, 69626588976, 1806936836184, 50936933449752, 1550292926398680, 50661309325357824, 1769286989373994752, 65762170385201959680, 2591979585702305271552, 107982615297265761991680
Offset: 0

Views

Author

Vaclav Kotesovec, Oct 17 2016

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[-LambertW[-Log[1+x]], {x, 0, 20}], x] * Range[0, 20]!
    Table[Sum[StirlingS1[n, k]*k^(k-1), {k, 1, n}], {n, 0, 20}]
  • PARI
    my(x='x+O('x^50)); concat([0], Vec(serlaplace(-lambertw(-log(1+x))))) \\ G. C. Greubel, Jun 21 2017

Formula

a(n) = Sum_{k=1..n} Stirling1(n, k)*k^(k-1).
a(n) ~ (exp(exp(-1))-1)^(1/2-n) * exp(-exp(-1)/2+1/2-n) * n^(n-1).
E.g.f.: Series_Reversion( exp(x * exp(-x)) - 1 ). - Seiichi Manyama, Sep 10 2024

A357337 E.g.f. satisfies A(x) = log(1 + x) * exp(2 * A(x)).

Original entry on oeis.org

0, 1, 3, 26, 334, 5964, 135228, 3729872, 121172560, 4532603904, 191869653120, 9067948437888, 473297792213376, 27039987154142208, 1678363256057198592, 112467293224249912320, 8092242817059530284032, 622253112192770288799744
Offset: 0

Views

Author

Seiichi Manyama, Sep 24 2022

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 20; A[_] = 0;
    Do[A[x_] = Log[1 + x]*Exp[2*A[x]] + O[x]^(nmax+1) // Normal, {nmax}];
    CoefficientList[A[x], x]*Range[0, nmax]! (* Jean-François Alcover, Mar 05 2024 *)
  • PARI
    my(N=20, x='x+O('x^N)); concat(0, Vec(serlaplace(-lambertw(-2*log(1+x))/2)))
    
  • PARI
    a(n) = sum(k=1, n, (2*k)^(k-1)*stirling(n, k, 1));

Formula

E.g.f.: -LambertW(-2 * log(1 + x))/2.
a(n) = Sum_{k=1..n} (2 * k)^(k-1) * Stirling1(n,k).
a(n) ~ n^(n-1) / (sqrt(2) * (exp(exp(-1)/2) - 1)^(n - 1/2) * exp(n + exp(-1)/4 - 1/2)). - Vaclav Kotesovec, Oct 04 2022
E.g.f.: Series_Reversion( exp(x * exp(-2*x)) - 1 ). - Seiichi Manyama, Sep 10 2024

A357392 E.g.f. satisfies A(x) = -log(1 - x * exp(2 * A(x))).

Original entry on oeis.org

0, 1, 5, 56, 990, 24024, 742560, 27907200, 1235591280, 62990928000, 3634245014400, 234102016512000, 16654322805120000, 1296884927852236800, 109720581991308288000, 10021650950985427353600, 982869376029609100032000, 103017324974226408345600000
Offset: 0

Views

Author

Seiichi Manyama, Sep 26 2022

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=1, n, (2*n)^(k-1)*abs(stirling(n, k, 1)));
    
  • PARI
    a(n) = sum(k=1, n, (3*n)^(k-1)*stirling(n, k, 1));
    
  • PARI
    a(n) = if(n==0, 0, (3*n-1)!/(2*n)!);

Formula

E.g.f. satisfies A(x) = log(1 + x * exp(3 * A(x))).
a(n) = Sum_{k=1..n} (2 * n)^(k-1) * |Stirling1(n,k)|.
a(n) = Sum_{k=1..n} (3 * n)^(k-1) * Stirling1(n,k).
a(n) = Product_{k=2*n+1..3*n-1} k = (3*n-1)!/(2*n)! for n > 0.
E.g.f.: Series_Reversion( exp(-3*x) * (exp(x) - 1) ). - Seiichi Manyama, Sep 10 2024
Showing 1-3 of 3 results.