A357672 a(n) = Sum_{k = 0..n} binomial(n+k-1,k) * Sum_{k = 0..n} binomial(n+k-1,k)^2.
1, 4, 84, 2920, 121940, 5607504, 273908712, 13947188112, 732102614100, 39332168075200, 2152235533317584, 119531412173662944, 6720552415489860584, 381775182057562837600, 21879043278489630349200, 1263402662473729731877920, 73438613319490294002441300, 4293679728171938162242298400
Offset: 0
Examples
Examples of supercongruences: a(17) - a(1) = 4293679728171938162242298400 - 4 = (2^2)*(17^5)*3457* 218688360593678551 == 0 (mod 17^5). a(5^2) - a(5) = (2^4)*(3^2)*(5^9)*7*7229*102559*465516030080883405648119 == 0 (mod 5^9).
Programs
-
Maple
seq(add(binomial(n+k-1,k), k = 0..n) * add( binomial(n+k-1,k)^2, k = 0..n), n = 0..20);
-
PARI
a(n) = sum(k = 0, n, binomial(n+k-1,k)) * sum(k = 0, n, binomial(n+k-1,k)^2); \\ Michel Marcus, Oct 24 2022
Comments