A357671
a(n) = Sum_{k = 0..n} ( binomial(n+k-1,k) + binomial(n+k-1,k)^2 ).
Original entry on oeis.org
2, 4, 20, 166, 1812, 22504, 297362, 4067298, 56897300, 809019580, 11649254520, 169444978124, 2485270719570, 36707044807996, 545386321069862, 8144809732228666, 122177690210103060, 1839933274439787940, 27804610626798500372, 421476329345312885304, 6406685025104178888312
Offset: 0
Examples of supercongruences:
a(19) - a(1) = 421476329345312885304 - 4 = (2^2)*(5^2)*(19^5)*1913*2383*373393 == 0 (mod 19^5).
a(25) - a(5) = 5375188503768910125546897504 - 22504 = (2^3)*(5^10)*1858537* 37019662696111 == 0 (mod 5^10).
-
seq(add( binomial(n+k-1,k) + binomial(n+k-1,k)^2, k = 0..n ), n = 0..20);
-
a(n) = sum(k = 0, n, binomial(n+k-1,k) + binomial(n+k-1,k)^2); \\ Michel Marcus, Oct 24 2022
-
from math import comb
def A357671(n): return comb(n<<1,n)+sum(comb(n+k-1,k)**2 for k in range(n+1)) if n else 2 # Chai Wah Wu, Oct 28 2022
A357673
a(n) = 4*Sum_{k = 0..2*n} binomial(n+k-1,k) + 3*Sum_{k = 0..2*n} binomial(n+k-1,k)^2.
Original entry on oeis.org
7, 21, 225, 5124, 162657, 5812521, 219004812, 8516056500, 338508840801, 13679415485805, 559978704877725, 23162632151271480, 966309241173439500, 40602415885424806824, 1716435895297948558812, 72941388509291664563124, 3113826813351114598588257, 133458673478315967012049245
Offset: 0
Examples of supercongruences:
a(17) - a(1) = 133458673478315967012049245 - 21 = (2^3)*3*7*(17^5)*61*109*4441*86491*219071 == 0 (mod 17^5).
a(25) - a(5) = 1681058690656849873108154414589433546896 - 5812521 = 3*(5^9)*17*124471*39410141*65963867*52155532801 == 0 (mod 5^9).
-
seq(add( 4*binomial(n+k-1,k) + 3*binomial(n+k-1,k)^2, k = 0..2*n ), n = 0..20);
-
Table[4 Sum[Binomial[n+k-1,k],{k,0,2n}]+3*Sum[Binomial[n+k-1,k]^2,{k,0,2n}],{n,0,20}] (* Harvey P. Dale, Oct 29 2022 *)
-
a(n) = 4*sum(k = 0, 2*n, binomial(n+k-1,k)) + 3*sum(k = 0, 2*n, binomial(n+k-1,k)^2); \\ Michel Marcus, Oct 24 2022
A357565
a(n) = 3*Sum_{k = 0..n} binomial(n+k-1,k)^2 + 2*Sum_{k = 0..n} binomial(n+k-1,k)^3.
Original entry on oeis.org
5, 10, 114, 2926, 109106, 4846260, 234488526, 11913003294, 625130924082, 33590792825200, 1838547540484364, 102135528447552060, 5743779960435245774, 326352202770939600460, 18706076476872783254286, 1080345839256279791104926, 62806507721442655949609010
Offset: 0
a(11) - a(1) = 102135528447552060 - 10 = 2*(5^2)*(11^5)*14657* 865363 == 0 (mod 11^5).
a(5^2) - a(5) = 581553752659150682384860284864053981408760 - 4846260 = 3*(2^2)*(5^9)*5611847956825027*4421531072180960789 == 0 (mod 5^9)
-
seq(add( 3*binomial(n+k-1,k)^2 + 2*binomial(n+k-1,k)^3, k = 0..n ), n = 0..20);
-
a(n) = 3*sum(k = 0, n, binomial(n+k-1,k)^2) + 2*sum(k = 0, n, binomial(n+k-1,k)^3); \\ Michel Marcus, Oct 25 2022
A357566
a(n) = ( Sum_{k = 0..n} binomial(n+k-1,k)^2 )^3 * ( Sum_{k = 0..n} binomial(n+k-1,k)^3 )^2.
Original entry on oeis.org
1, 32, 3556224, 4816142496896, 14260946236464636800, 62923492736113950202540032, 355372959542696519903013302282592, 2376354966106399942850054560101358877184, 17973185649572984869873798116070605084766512000, 149319509846904520286037745483655872001727895961600000
Offset: 0
a(7) - a(1) = 2376354966106399942850054560101358877184 - 32 = (2^5)*(7^5)*19*31*317*339247*25170329*2771351868561767 == 0 (mod 7^5).
-
seq((add(binomial(n+k-1,k)^2, k = 0..n))^3 * (add( binomial(n+k-1,k)^3, k = 0..n))^2, n = 0..20);
-
Table[Sum[Binomial[n+k-1,k]^2, {k, 0, n}]^3 * Sum[Binomial[n+k-1,k]^3, {k, 0, n}]^2, {n, 0, 10}] (* Vaclav Kotesovec, May 31 2025 *)
-
a(n) = sum(k = 0, n, binomial(n+k-1,k)^2)^3 * sum(k = 0, n, binomial(n+k-1,k)^3)^2; \\ Michel Marcus, Oct 25 2022
A357674
a(n) = ( Sum_{k = 0..2*n} binomial(n+k-1,k) )^4 * ( Sum_{k = 0..2*n} binomial(n+k-1,k)^2 )^3.
Original entry on oeis.org
1, 2187, 8422734375, 202402468703748096, 9223976224194016590174375, 587835594121137662072707812564687, 46157429480574073282465608886521546620928, 4181198339699286332943143923058721957212160000000, 420336565507755143573799144638372909582306681004894518439
Offset: 0
Example of a supercongruence:
a(7) - a(1) = 4181198339699286332943143923058721957212160000000 - 2187 = (3^7)*(7^5)*211*298225180113209*1807736060307048120859243 == 0 (mod 7^5).
-
seq((add(binomial(n+k-1,k), k = 0..2*n))^4 * (add( binomial(n+k-1,k)^2, k = 0..2*n))^3, n = 0..20);
-
Table[Binomial[3*n,n]^4 * Sum[Binomial[n+k-1,k]^2, {k, 0, 2*n}]^3, {n, 0, 10}] (* Vaclav Kotesovec, May 31 2025 *)
-
a(n) = sum(k = 0, 2*n, binomial(n+k-1,k))^4 * sum(k = 0, 2*n, binomial(n+k-1,k)^2)^3; \\ Michel Marcus, Oct 24 2022
Showing 1-5 of 5 results.
Comments