cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A357964 Expansion of e.g.f. exp( (exp(x^3) - 1)/x^2 ).

Original entry on oeis.org

1, 1, 1, 1, 13, 61, 181, 1261, 12601, 77113, 481321, 6102361, 63041221, 492260341, 6041807773, 87670198981, 945716793841, 11365316711281, 193962371184721, 2824572189001393, 36983289122143741, 658584258052917421, 12073641790111934341, 185876257572349699741
Offset: 0

Views

Author

Seiichi Manyama, Oct 22 2022

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(exp((exp(x^3)-1)/x^2)))
    
  • PARI
    a(n) = n!*sum(k=0, n\3, stirling(n-2*k, n-3*k, 2)/(n-2*k)!);

Formula

a(n) = n! * Sum_{k=0..floor(n/3)} Stirling2(n-2*k,n-3*k)/(n-2*k)!.

A375795 Expansion of e.g.f. 1/(1 - (exp(x^2) - 1)/x).

Original entry on oeis.org

1, 1, 2, 9, 48, 320, 2580, 24150, 258720, 3117744, 41741280, 614774160, 9877412160, 171923225760, 3222634615200, 64721762305200, 1386495651340800, 31558444491974400, 760564843136017920, 19348085890139086080, 518103061345155686400, 14567452481227893811200
Offset: 0

Views

Author

Seiichi Manyama, Aug 29 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1-(exp(x^2)-1)/x)))
    
  • PARI
    a(n) = n!*sum(k=0, n\2, (n-2*k)!*stirling(n-k, n-2*k, 2)/(n-k)!);

Formula

a(n) = n! * Sum_{k=0..floor(n/2)} (n-2*k)! * Stirling2(n-k,n-2*k)/(n-k)!.

A357965 Expansion of e.g.f. exp( (exp(x^4) - 1)/x^3 ).

Original entry on oeis.org

1, 1, 1, 1, 1, 61, 361, 1261, 3361, 68041, 1073521, 8343721, 43290721, 432509221, 11472541081, 165124339381, 1457296102081, 12237047593681, 322364521392481, 7462073325643921, 103362225413048641, 1051987428484484941, 21127644716862970441
Offset: 0

Views

Author

Seiichi Manyama, Oct 22 2022

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(exp((exp(x^4)-1)/x^3)))
    
  • PARI
    a(n) = n!*sum(k=0, n\4, stirling(n-3*k, n-4*k, 2)/(n-3*k)!);

Formula

a(n) = n! * Sum_{k=0..floor(n/4)} Stirling2(n-3*k,n-4*k)/(n-3*k)!.
Showing 1-3 of 3 results.