cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A357962 Expansion of e.g.f. exp( (exp(x^2) - 1)/x ).

Original entry on oeis.org

1, 1, 1, 4, 13, 51, 271, 1366, 8849, 58717, 432541, 3530176, 29787781, 279974839, 2715912291, 28415168146, 312503079841, 3600714035321, 43979791574809, 556150585730140, 7417561518005341, 102438949373356891, 1476634705941320311, 22102618328057267694
Offset: 0

Views

Author

Seiichi Manyama, Oct 22 2022

Keywords

Crossrefs

Programs

  • Mathematica
    With[{nn=30},CoefficientList[Series[Exp[(Exp[x^2]-1)/x],{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Oct 19 2024 *)
  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(exp((exp(x^2)-1)/x)))
    
  • PARI
    a(n) = n!*sum(k=0, n\2, stirling(n-k, n-2*k, 2)/(n-k)!);

Formula

a(n) = n! * Sum_{k=0..floor(n/2)} Stirling2(n-k,n-2*k)/(n-k)!.

A357964 Expansion of e.g.f. exp( (exp(x^3) - 1)/x^2 ).

Original entry on oeis.org

1, 1, 1, 1, 13, 61, 181, 1261, 12601, 77113, 481321, 6102361, 63041221, 492260341, 6041807773, 87670198981, 945716793841, 11365316711281, 193962371184721, 2824572189001393, 36983289122143741, 658584258052917421, 12073641790111934341, 185876257572349699741
Offset: 0

Views

Author

Seiichi Manyama, Oct 22 2022

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(exp((exp(x^3)-1)/x^2)))
    
  • PARI
    a(n) = n!*sum(k=0, n\3, stirling(n-2*k, n-3*k, 2)/(n-2*k)!);

Formula

a(n) = n! * Sum_{k=0..floor(n/3)} Stirling2(n-2*k,n-3*k)/(n-2*k)!.
Showing 1-2 of 2 results.