cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A357962 Expansion of e.g.f. exp( (exp(x^2) - 1)/x ).

Original entry on oeis.org

1, 1, 1, 4, 13, 51, 271, 1366, 8849, 58717, 432541, 3530176, 29787781, 279974839, 2715912291, 28415168146, 312503079841, 3600714035321, 43979791574809, 556150585730140, 7417561518005341, 102438949373356891, 1476634705941320311, 22102618328057267694
Offset: 0

Views

Author

Seiichi Manyama, Oct 22 2022

Keywords

Crossrefs

Programs

  • Mathematica
    With[{nn=30},CoefficientList[Series[Exp[(Exp[x^2]-1)/x],{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Oct 19 2024 *)
  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(exp((exp(x^2)-1)/x)))
    
  • PARI
    a(n) = n!*sum(k=0, n\2, stirling(n-k, n-2*k, 2)/(n-k)!);

Formula

a(n) = n! * Sum_{k=0..floor(n/2)} Stirling2(n-k,n-2*k)/(n-k)!.

A375796 Expansion of e.g.f. 1/(1 - (exp(x^3) - 1)/x^2).

Original entry on oeis.org

1, 1, 2, 6, 36, 240, 1800, 15960, 164640, 1905120, 24343200, 342619200, 5269017600, 87749101440, 1573083832320, 30218175187200, 619256461824000, 13483023576422400, 310821905134540800, 7563477205380096000, 193736838233562624000, 5210638309494858240000
Offset: 0

Views

Author

Seiichi Manyama, Aug 29 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1-(exp(x^3)-1)/x^2)))
    
  • PARI
    a(n) = n!*sum(k=0, n\3, (n-3*k)!*stirling(n-2*k, n-3*k, 2)/(n-2*k)!);

Formula

a(n) = n! * Sum_{k=0..floor(n/3)} (n-3*k)! * Stirling2(n-2*k,n-3*k)/(n-2*k)!.

A357965 Expansion of e.g.f. exp( (exp(x^4) - 1)/x^3 ).

Original entry on oeis.org

1, 1, 1, 1, 1, 61, 361, 1261, 3361, 68041, 1073521, 8343721, 43290721, 432509221, 11472541081, 165124339381, 1457296102081, 12237047593681, 322364521392481, 7462073325643921, 103362225413048641, 1051987428484484941, 21127644716862970441
Offset: 0

Views

Author

Seiichi Manyama, Oct 22 2022

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(exp((exp(x^4)-1)/x^3)))
    
  • PARI
    a(n) = n!*sum(k=0, n\4, stirling(n-3*k, n-4*k, 2)/(n-3*k)!);

Formula

a(n) = n! * Sum_{k=0..floor(n/4)} Stirling2(n-3*k,n-4*k)/(n-3*k)!.
Showing 1-3 of 3 results.