cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A318990 Numbers of the form prime(x) * prime(y) where x divides y.

Original entry on oeis.org

4, 6, 9, 10, 14, 21, 22, 25, 26, 34, 38, 39, 46, 49, 57, 58, 62, 65, 74, 82, 86, 87, 94, 106, 111, 115, 118, 121, 122, 129, 133, 134, 142, 146, 158, 159, 166, 169, 178, 183, 185, 194, 202, 206, 213, 214, 218, 226, 235, 237, 254, 259, 262, 267, 274, 278, 289
Offset: 1

Views

Author

Gus Wiseman, Sep 06 2018

Keywords

Examples

			The sequence of all dividing pairs (columns) begins:
  1  1  2  1  1  2  1  3  1  1  1  2  1  4  2  1  1  3  1  1  1  2  1  1
  1  2  2  3  4  4  5  3  6  7  8  6  9  4  8 10 11  6 12 13 14 10 15 16
		

Crossrefs

A subset of A001358 (semiprimes), squarefree A006881.
The squarefree version is A339005.
The quotient is A358103 = A358104 / A358105.
A000040 lists the primes.
A001222 counts prime indices, distinct A001221.
A003963 multiplies together prime indices.
A056239 adds up prime indices.
A358192/A358193 gives quotients of semiprime indices.

Programs

  • Mathematica
    Select[Range[100],And[PrimeOmega[#]==2,Or[PrimePowerQ[#],Divisible@@Reverse[PrimePi/@FactorInteger[#][[All,1]]]]]&]
  • PARI
    ok(n)={my(f=factor(n)); bigomega(f)==2 && (#f~==1 || primepi(f[2,1]) % primepi(f[1,1]) == 0)} \\ Andrew Howroyd, Oct 26 2018

A358103 Quotient of the n-th divisible pair, where pairs are ordered by Heinz number. Quotient of prime indices of A318990(n).

Original entry on oeis.org

1, 2, 1, 3, 4, 2, 5, 1, 6, 7, 8, 3, 9, 1, 4, 10, 11, 2, 12, 13, 14, 5, 15, 16, 6, 3, 17, 1, 18, 7, 2, 19, 20, 21, 22, 8, 23, 1, 24, 9, 4, 25, 26, 27, 10, 28, 29, 30, 5, 11, 31, 3, 32, 12, 33, 34, 1, 35, 36, 13, 6, 37, 2, 14, 38, 39, 15, 40, 41, 1, 42, 7, 4, 43
Offset: 1

Views

Author

Gus Wiseman, Nov 02 2022

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.

Examples

			The 12th divisible pair is (2,6) so a(12) = 3.
		

Crossrefs

The divisible pairs are ranked by A318990, proper A339005.
Quotient of A358104 and A358105.
A different ordering is A358106.
A000040 lists the primes.
A001222 counts prime indices, distinct A001221.
A001358 lists the semiprimes, squarefree A006881.
A003963 multiplies together prime indices.
A056239 adds up prime indices.
A358192/A358193 gives quotients of semiprime indices.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Join@@Table[Cases[primeMS[n],{x_,y_}/;Divisible[y,x]:>y/x,{0}],{n,100}]

Formula

a(n) = A358104(n)/A358105(n).

A358104 Unreduced numerator of the n-th divisible pair, where pairs are ordered by Heinz number. Greater prime index of A318990(n).

Original entry on oeis.org

1, 2, 2, 3, 4, 4, 5, 3, 6, 7, 8, 6, 9, 4, 8, 10, 11, 6, 12, 13, 14, 10, 15, 16, 12, 9, 17, 5, 18, 14, 8, 19, 20, 21, 22, 16, 23, 6, 24, 18, 12, 25, 26, 27, 20, 28, 29, 30, 15, 22, 31, 12, 32, 24, 33, 34, 7, 35, 36, 26, 18, 37, 10, 28, 38, 39, 30, 40, 41, 8, 42
Offset: 1

Views

Author

Gus Wiseman, Nov 02 2022

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.

Examples

			The 12th divisible pair is (2,6) so a(12) = 6.
		

Crossrefs

The divisible pairs are ranked by A318990, proper A339005.
For all semiprimes we have A338913.
The quotient of the pair is A358103.
The denominator is A358105.
The reduced version for all semiprimes is A358192, denominator A358193.
A000040 lists the primes.
A001222 counts prime indices, distinct A001221.
A001358 lists the semiprimes, squarefree A006881.
A003963 multiplies together prime indices.
A056239 adds up prime indices.
A318991 ranks divisor-chains.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Join@@Table[Cases[primeMS[n],{x_,y_}/;Divisible[y,x]:>y,{0}],{n,1000}]

Formula

A358103(n) = a(n)/A358105(n).

A358106 Quotient of the n-th divisible pair, where pairs are ordered first by sum and then by denominator.

Original entry on oeis.org

1, 2, 3, 1, 4, 5, 2, 1, 6, 7, 3, 1, 8, 2, 9, 4, 1, 10, 11, 5, 3, 2, 1, 12, 13, 6, 1, 14, 4, 2, 15, 7, 3, 1, 16, 17, 8, 5, 2, 1, 18, 19, 9, 4, 3, 1, 20, 6, 2, 21, 10, 1, 22, 23, 11, 7, 5, 3, 2, 1, 24, 4, 25, 12, 1, 26, 8, 2, 27, 13, 6, 3, 1, 28, 29, 14, 9, 5, 4, 2, 1
Offset: 2

Views

Author

Gus Wiseman, Nov 03 2022

Keywords

Examples

			Grouping by sum gives:
   2:  1
   3:  2
   4:  3 1
   5:  4
   6:  5 2 1
   7:  6
   8:  7 3 1
   9:  8 2
  10:  9 4 1
  11: 10
  12: 11 5 3 2 1
  13: 12
  14: 13 6 1
  15: 14 4 2
  16: 15 7 3 1
  17: 16
  18: 17 8 5 2 1
		

Crossrefs

Row-lengths are A032741.
This is A208460/A027751.
A ranking of divisible pairs is A318990, proper A339005.
A different ordering is A358103 = A358104 / A358105.
A000041 counts partitions, strict A000009.
A001358 lists semiprimes, squarefree A006881.
A318991 ranks divisor-chains.
A358192/A358193 gives quotients of semiprime indices.

Programs

  • Mathematica
    Table[Divide@@@Select[IntegerPartitions[n,{2}],Divisible@@#&],{n,2,30}]

Formula

a(n) = A208460(n)/A027751(n).

A358192 Numerator of the quotient of the prime indices of the n-th semiprime.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 3, 1, 1, 1, 1, 2, 3, 1, 1, 1, 1, 2, 1, 4, 1, 3, 1, 1, 2, 2, 1, 3, 1, 1, 1, 1, 4, 1, 1, 2, 1, 1, 1, 2, 1, 5, 3, 1, 3, 1, 1, 4, 1, 1, 2, 1, 1, 1, 5, 1, 2, 1, 2, 3, 1, 5, 1, 1, 3, 4, 1, 2, 6, 1, 1, 1, 3, 2, 5, 1, 1, 1, 3, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Nov 03 2022

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The 31st semiprime has prime indices (4,6), so the quotient is 4/6 = 2/3; hence a(31) = 2.
		

Crossrefs

The divisible pairs are ranked by A318990, proper A339005.
The unreduced pair is (A338912, A338913).
The quotients of divisible pairs are A358103.
The restriction to divisible pairs is A358104, denominator A358105.
The denominator is A358193.
A000040 lists the primes.
A001222 counts prime indices, distinct A001221.
A001358 lists the semiprimes, squarefree A006881.
A003963 multiplies together prime indices.
A056239 adds up prime indices.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Numerator/@Divide@@@primeMS/@Select[Range[100],PrimeOmega[#]==2&]

A358193 Denominator of the quotient of the prime indices of the n-th semiprime.

Original entry on oeis.org

1, 2, 1, 3, 4, 3, 2, 5, 1, 6, 5, 7, 4, 8, 3, 9, 1, 7, 5, 4, 10, 11, 2, 9, 12, 5, 13, 7, 14, 5, 3, 11, 15, 8, 16, 6, 3, 17, 7, 1, 18, 13, 7, 2, 19, 15, 20, 6, 10, 21, 11, 22, 8, 9, 23, 1, 17, 24, 9, 4, 7, 25, 19, 26, 5, 13, 27, 8, 10, 28, 14, 11, 29, 21, 7, 30
Offset: 1

Views

Author

Gus Wiseman, Nov 03 2022

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The 31-st semiprime has prime indices (4,6), so the quotient is 4/6 = 2/3; hence a(31) = 3.
		

Crossrefs

The divisible pairs are ranked by A318990, proper A339005.
The unreduced pair is (A338912, A338913).
The quotients of divisible pairs are A358103.
The restriction to divisible pairs is A358105, numerator A358104.
The numerator is A358192.
A000040 lists the primes.
A001222 counts prime indices, distinct A001221.
A001358 lists the semiprimes, squarefree A006881.
A003963 multiplies together prime indices.
A056239 adds up prime indices.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Denominator/@Divide@@@primeMS/@Select[Range[100],PrimeOmega[#]==2&]
Showing 1-6 of 6 results.