A358152 Number of strict closure operators on a set of n elements such that every point and every closed set not containing that point can be separated by clopen sets.
1, 1, 2, 8, 121, 18460, 159273237
Offset: 0
Examples
The a(3) = 8 set-systems of closed sets: {{}, {1, 2, 3}} {{}, {1}, {2, 3}, {1, 2, 3}} {{}, {2}, {1, 3},{1, 2, 3}} {{}, {3}, {1, 2}, {1, 2, 3}} {{}, {1}, {2}, {3}, {1, 2}, {1, 3}, {1, 2, 3}} {{}, {1}, {2}, {3}, {1, 2}, {2, 3}, {1, 2, 3}} {{}, {1}, {2}, {3}, {1, 3}, {2, 3}, {1, 2, 3}} {{}, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}
References
- G. M. Bergman, "Lattices, Closure Operators, and Galois Connections", pp. 173-212 in "An Invitation to General Algebra and Universal Constructions", Springer, (2015).
Links
- Victor Chepoi, Separation of Two Convex Sets in Convexity Structures
Programs
-
Mathematica
SeparatedPairQ[F_, n_] := AllTrue[ Flatten[(x |-> ({x, #} & /@ Select[F, FreeQ[#, x] &])) /@ Range[n], 1], MemberQ[F, _?(H |-> With[{H1 = Complement[Range[n], H]}, MemberQ[F, H1] && MemberQ[H, #[[1]] ] && SubsetQ[H1, #[[2]] ]])]&]; Table[Length@Select[Select[ Subsets[Subsets[Range[n]]], And[ MemberQ[#, {}], MemberQ[#, Range[n]], SubsetQ[#, Intersection @@@ Tuples[#, 2]]] & ], SeparatedPairQ[#, n] &], {n, 0, 4}]
Extensions
a(5)-a(6) from Christian Sievers, Jul 20 2024
Comments