A356544 Number of strict closure operators on a set of n elements such that all pairs of nonempty disjoint closed sets can be separated by clopen sets.
0, 1, 4, 35, 857, 84230, 70711467
Offset: 0
Examples
The a(3) = 35 set-systems of closed sets: {{}, {1, 2, 3}} {{}, {1}, {1, 2, 3}} {{}, {2}, {1, 2, 3}} {{}, {3}, {1, 2, 3}} {{}, {1, 2}, {1, 2, 3}} {{}, {1, 3}, {1, 2, 3}} {{}, {2, 3}, {1, 2, 3}} {{}, {1}, {1, 2}, {1, 2, 3}} {{}, {1}, {1, 3}, {1, 2, 3}} {{}, {1}, {2, 3}, {1, 2, 3}} {{}, {2}, {1, 2}, {1, 2, 3}} {{}, {2}, {1, 3}, {1, 2, 3}} {{}, {2}, {2, 3}, {1, 2, 3}} {{}, {3}, {1, 2}, {1, 2, 3}} {{}, {3}, {1, 3}, {1, 2, 3}} {{}, {3}, {2, 3}, {1, 2, 3}} {{}, {1}, {2}, {1, 3}, {1, 2, 3}} {{}, {1}, {2}, {2, 3}, {1, 2, 3}} {{}, {1}, {3}, {1, 2}, {1, 2, 3}} {{}, {1}, {3}, {2, 3}, {1, 2, 3}} {{}, {1}, {1, 2}, {1, 3}, {1, 2, 3}} {{}, {2}, {3}, {1, 2}, {1, 2, 3}} {{}, {2}, {3}, {1, 3}, {1, 2, 3}} {{}, {2}, {1, 2}, {2, 3}, {1, 2, 3}} {{}, {3}, {1, 3}, {2, 3}, {1, 2, 3}} {{}, {1}, {2}, {1, 2}, {1, 3}, {1, 2, 3}} {{}, {1}, {2}, {1, 2}, {2, 3}, {1, 2, 3}} {{}, {1}, {3}, {1, 2}, {1, 3}, {1, 2, 3}} {{}, {1}, {3}, {1, 3}, {2, 3}, {1, 2, 3}} {{}, {2}, {3}, {1, 2}, {2, 3}, {1, 2, 3}} {{}, {2}, {3}, {1, 3}, {2, 3}, {1, 2, 3}} {{}, {1}, {2}, {3}, {1, 2}, {1, 3}, {1, 2, 3}} {{}, {1}, {2}, {3}, {1, 2}, {2, 3}, {1, 2, 3}} {{}, {1}, {2}, {3}, {1, 3}, {2, 3}, {1, 2, 3}} {{}, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}
References
- G. M. Bergman. Lattices, Closure Operators, and Galois Connections. Springer, Cham. 2015. 173-212.
Links
- Victor Chepoi, Separation of Two Convex Sets in Convexity Structures
- Wikipedia, Closure operator
Programs
-
Mathematica
SeparatedPairQ[A_][B_] := AnyTrue[A, And @@ MapThread[SubsetQ, {#, B}] &]; Table[Length[With[{X = Range[n]}, Select[Cases[Subsets@Subsets@X, {{}, _, X}], F |-> SubsetQ[F, Intersection @@@ Subsets[F, {2}]] && AllTrue[Select[Subsets[Drop[F, 1], {2}], Apply[DisjointQ]], SeparatedPairQ[Select[{#, Complement[X, #]} & /@ F, MemberQ[F, #[[2]]] &]]]]]], {n, 0, 4}]
Extensions
a(5)-a(6) from Christian Sievers, Jun 13 2024
Comments