cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A358271 Product of the digits of 3^n.

Original entry on oeis.org

1, 3, 9, 14, 8, 24, 126, 112, 180, 1296, 0, 1372, 240, 3240, 217728, 0, 0, 0, 0, 24192, 0, 0, 0, 2709504, 6635520, 0, 66355200, 8534937600, 731566080, 0, 0, 10369949184, 0, 0, 399983754240, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6243870843076608000
Offset: 0

Views

Author

Joseph Caliendo, Nov 06 2022

Keywords

Comments

a(68) is likely the last nonzero term; see A030700 and A238939. - Michael S. Branicky, Nov 06 2022

Examples

			For a(0), 3^0 = 1 with product of digits 1;
for a(3), 3^3 = 27 with product of digits 2*7 = 14;
for a(10), 3^10 = 59049 with product of digits 5*9*0*4*9 = 0.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Times @@ IntegerDigits[3^n]; Array[a, 69, 0] (* Amiram Eldar, Nov 07 2022 *)
  • PARI
    a(n) = vecprod(digits(3^n)); \\ Michel Marcus, Nov 07 2022
  • Python
    from math import prod
    def a(n): return prod(map(int, str(3**n)))
    print([a(n) for n in range(69)]) # Michael S. Branicky, Nov 06 2022
    

Formula

a(n) = A007954(A000244(n)).

Extensions

More terms from Michael S. Branicky, Nov 06 2022