cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A358367 a(n) = 8^n * binomial(n * 3/2, n).

Original entry on oeis.org

1, 12, 192, 3360, 61440, 1153152, 22020096, 425677824, 8304721920, 163176499200, 3224446697472, 64012657213440, 1275708366127104, 25506581874278400, 511404848311173120, 10278423735852072960, 207016682596362878976, 4177272328882468945920, 84430333294202899660800
Offset: 0

Views

Author

Peter Luschny, Nov 14 2022

Keywords

Programs

  • Maple
    seq(8^n * binomial(n*3/2, n), n = 0..18);
  • Mathematica
    A358367[n_] := 8^n*Binomial[3/2*n, n];
    Array[A358367, 20, 0] (* Paolo Xausa, Jan 31 2024 *)
  • PARI
    a(n) = 8^n * binomial(n * 3/2, n); \\ Michel Marcus, Nov 15 2022
  • Python
    from sympy import binomial, S
    def A358367(n): return (1<Chai Wah Wu, Nov 14 2022
    

Formula

a(n) ~ c*2^(2*n)*3^(3*n/2)/sqrt(n) where c = sqrt(3/(2*Pi)). - Stefano Spezia, Nov 14 2022