A358446 a(n) = n! * Sum_{k=0..floor(n/2)} 1/binomial(n-k, k).
1, 1, 4, 9, 56, 190, 1704, 7644, 93120, 516240, 8136000, 53523360, 1047548160, 7961241600, 187132377600, 1611967392000, 44311886438400, 426483893606400, 13428757601280000, 142790947407360000, 5066854992138240000, 58981696577556480000, 2328441680297779200000
Offset: 0
Keywords
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..449
Programs
-
Maple
egf := (2*x+1)/((x-1)*(x+1)*(x^2-x-1))-(x*log((1-x)^2*(x+1)))/(-x^2+x+1)^2: ser := series(egf, x, 22): seq(n!*coeff(ser, x, n), n = 0..20); # Peter Luschny, Nov 17 2022
-
Maxima
a(n):=factorial(n)*sum(1/binomial(n-k,k),k,0,floor(n/2));
-
SageMath
def A358446(n): return sum(A143216(n, k) // A344391(n, k) for k in range((n+2)//2)) print([A358446(n) for n in range(23)]) # Peter Luschny, Nov 17 2022
Formula
E.g.f.: (2*x+1)/((x-1)*(x+1)*(x^2-x-1))-(x*log((1-x)^2*(x+1)))/(-x^2+x+1)^2.
a(n) ~ n! * (3 + (-1)^n)/2. - Vaclav Kotesovec, Nov 17 2022