cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A358446 a(n) = n! * Sum_{k=0..floor(n/2)} 1/binomial(n-k, k).

Original entry on oeis.org

1, 1, 4, 9, 56, 190, 1704, 7644, 93120, 516240, 8136000, 53523360, 1047548160, 7961241600, 187132377600, 1611967392000, 44311886438400, 426483893606400, 13428757601280000, 142790947407360000, 5066854992138240000, 58981696577556480000, 2328441680297779200000
Offset: 0

Views

Author

Vladimir Kruchinin, Nov 16 2022

Keywords

Crossrefs

Programs

  • Maple
    egf := (2*x+1)/((x-1)*(x+1)*(x^2-x-1))-(x*log((1-x)^2*(x+1)))/(-x^2+x+1)^2:
    ser := series(egf, x, 22): seq(n!*coeff(ser, x, n), n = 0..20); # Peter Luschny, Nov 17 2022
  • Maxima
    a(n):=factorial(n)*sum(1/binomial(n-k,k),k,0,floor(n/2));
    
  • SageMath
    def A358446(n):
        return sum(A143216(n, k) // A344391(n, k) for k in range((n+2)//2))
    print([A358446(n) for n in range(23)]) # Peter Luschny, Nov 17 2022

Formula

E.g.f.: (2*x+1)/((x-1)*(x+1)*(x^2-x-1))-(x*log((1-x)^2*(x+1)))/(-x^2+x+1)^2.
a(n) ~ n! * (3 + (-1)^n)/2. - Vaclav Kotesovec, Nov 17 2022
a(n) = Sum_{k=0..floor(n/2)} A143216(n, k)/A344391(n, k). - Peter Luschny, Nov 17 2022