cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A358852 a(n) = n!*Sum_{m=0..floor(n/3)} 1/binomial(n-m,2*m).

Original entry on oeis.org

1, 1, 2, 12, 32, 140, 1512, 6384, 44928, 749088, 4299840, 42546240, 974695680, 7061783040, 90598072320, 2640888230400, 23099489280000, 364696083763200, 12881138586624000, 132004210918809600, 2475855534329856000, 102587486964092928000, 1205260977814806528000
Offset: 0

Views

Author

Vladimir Kruchinin, Dec 02 2022

Keywords

Crossrefs

Cf. A358446.

Programs

  • Maxima
    a(n):=n!*sum(1/(binomial(n-m,2*m)),m,0,floor(n/3));
    
  • PARI
    a(n) = n!*sum(m=0, n\3, 1/binomial(n-m,2*m)); \\ Michel Marcus, Dec 03 2022

Formula

E.g.f.: ((sqrt(x)*(x^3-2*x^2+x+1)*log((-x^(3/2)-1)/(x^(3/2)-1)))/2+(1-x)*x*log((1-x)^3*(x^2+x+1)))/(-x^3+2*x^2-x+1)^2+(3*x^2+1)/((x-1)*(x^2+x+1)*(x^3-2*x^2+x-1)).

A358491 a(n) = n!*Sum_{m=0..floor((n-1)/2)} 1/(n-m)/binomial(n-m-1,m).

Original entry on oeis.org

1, 1, 5, 10, 74, 216, 2316, 8688, 128880, 581760, 11406240, 59667840, 1482693120, 8782905600, 266800262400, 1762116249600, 63536485017600, 462613126348800, 19342202181120000, 153884245616640000, 7325057766297600000
Offset: 1

Views

Author

Vladimir Kruchinin, Nov 19 2022

Keywords

Crossrefs

Programs

  • Maxima
    a(n):=n!*sum(1/(n-m)/(binomial(n-m-1,m)),m,0,floor((n-1)/2));
    a(n):=n!*sum((fib(i))/(n-i+1)*(2*(-1)^(i+1)+(-1)^(n)),i,1,n);

Formula

E.g.f.: log((x-1)^2*(x+1))/(x^2-x-1).
a(n) = n!*Sum_{i=1..n} (F(i)/(n-i+1))*(2*(-1)^(i+1)+(-1)^n), F(n) - Fibonacci numbers.
Showing 1-2 of 2 results.