cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A358543 a(n) is the smallest number with exactly n divisors that are square pyramidal numbers.

Original entry on oeis.org

1, 5, 30, 140, 420, 1540, 4620, 13860, 78540, 157080, 471240, 1141140, 3603600, 3423420, 13693680, 30630600, 58198140, 116396280, 214414200, 428828400, 581981400, 1163962800, 5354228880, 4073869800, 8147739600, 26771144400, 36082846800, 80313433200, 93699005400, 187398010800
Offset: 1

Views

Author

Ilya Gutkovskiy, Nov 21 2022

Keywords

Comments

Any terms for n > 25 exceed 10^10. - Lucas A. Brown, Dec 24 2022
a(25) <= 8147739600, a(26) <= 26771144400, a(27) <= 36082846800, a(28) <= 80313433200. - Jon E. Schoenfield, Dec 16 2022

Examples

			a(3) = 30 because 30 has 3 square pyramidal divisors {1, 5, 30} and this is the smallest such number.
		

Crossrefs

Programs

  • PARI
    issqpyr(n) = my(m = sqrtnint(3*n, 3)); n==m*(m+1)*(2*m+1)/6; \\ A253903
    a(n) = my(k=1); while (sumdiv(k, d, issqpyr(d)) != n, k++); k; \\ Michel Marcus, Nov 21 2022

Extensions

a(15) from Michel Marcus, Nov 21 2022
a(16)-a(20) from Jinyuan Wang, Nov 28 2022
a(21)-a(22) from Lucas A. Brown, Dec 14 2022
a(23)-a(24) from Lucas A. Brown, Dec 18 2022
a(25) from Lucas A. Brown, Dec 22 2022
a(26)-a(30) from Bert Dobbelaere, May 18 2025