A358543 a(n) is the smallest number with exactly n divisors that are square pyramidal numbers.
1, 5, 30, 140, 420, 1540, 4620, 13860, 78540, 157080, 471240, 1141140, 3603600, 3423420, 13693680, 30630600, 58198140, 116396280, 214414200, 428828400, 581981400, 1163962800, 5354228880, 4073869800, 8147739600, 26771144400, 36082846800, 80313433200, 93699005400, 187398010800
Offset: 1
Keywords
Examples
a(3) = 30 because 30 has 3 square pyramidal divisors {1, 5, 30} and this is the smallest such number.
Links
- Lucas A. Brown, Python program.
- Eric Weisstein's World of Mathematics, Square Pyramidal Number.
- Index entries for sequences related to divisors of numbers
Programs
-
PARI
issqpyr(n) = my(m = sqrtnint(3*n, 3)); n==m*(m+1)*(2*m+1)/6; \\ A253903 a(n) = my(k=1); while (sumdiv(k, d, issqpyr(d)) != n, k++); k; \\ Michel Marcus, Nov 21 2022
Extensions
a(15) from Michel Marcus, Nov 21 2022
a(16)-a(20) from Jinyuan Wang, Nov 28 2022
a(21)-a(22) from Lucas A. Brown, Dec 14 2022
a(23)-a(24) from Lucas A. Brown, Dec 18 2022
a(25) from Lucas A. Brown, Dec 22 2022
a(26)-a(30) from Bert Dobbelaere, May 18 2025
Comments