A358544 a(n) is the smallest number with exactly n divisors that are centered triangular numbers.
1, 4, 20, 320, 460, 5440, 14260, 12920, 168640, 103360, 594320, 3878720, 2377280, 9211960, 18423920, 36847840, 125995840, 73695680, 865924240, 976467760, 1952935520, 3463696960, 3905871040, 31246968320, 22946992360
Offset: 1
Examples
a(3) = 20 because 20 has 3 centered triangular divisors {1, 4, 10} and this is the smallest such number.
Links
- Lucas A. Brown, Python program.
- Eric Weisstein's World of Mathematics, Centered Triangular Number
- Index entries for sequences related to divisors of numbers
Programs
-
PARI
isct(n) = my(k=(2*n-2)/3, m); (n==1) || ((denominator(k)==1) && (m=sqrtint(k)) && (m*(m+1)==k)); \\ A005448 a(n) = my(k=1); while (sumdiv(k, d, isct(d)) != n, k++); k; \\ Michel Marcus, Nov 21 2022
Extensions
a(14) from Michel Marcus, Nov 21 2022
a(15)-a(25) from Jinyuan Wang, Nov 29 2022
Comments