cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A342507 Number of internal nodes in rooted tree with Matula-Goebel number n.

Original entry on oeis.org

0, 1, 2, 1, 3, 2, 2, 1, 3, 3, 4, 2, 3, 2, 4, 1, 3, 3, 2, 3, 3, 4, 4, 2, 5, 3, 4, 2, 4, 4, 5, 1, 5, 3, 4, 3, 3, 2, 4, 3, 4, 3, 3, 4, 5, 4, 5, 2, 3, 5, 4, 3, 2, 4, 6, 2, 3, 4, 4, 4, 4, 5, 4, 1, 5, 5, 3, 3, 5, 4, 4, 3, 4, 3, 6, 2, 5, 4, 5, 3, 5, 4, 5, 3, 5, 3, 5, 4, 3, 5, 4, 4, 6, 5, 4, 2, 6, 3, 6, 5
Offset: 1

Views

Author

François Marques, Mar 14 2021

Keywords

Comments

The label f(T) for a rooted tree T is 1 if T has 1 node, otherwise f(T) = Product_{T_i} prime(f(T_i)) where the T_i are the subtrees obtained by deleting the root and the edges adjacent to it. (Cf. A061773 for illustration.)

Examples

			a(7) = 2 because the rooted tree with Matula-Goebel number 7 is the rooted tree Y.
a(2^m) = 1 because the rooted tree with Matula-Goebel number 2^m is the star tree with m edges.
		

Crossrefs

Other statistics are: A061775 (nodes), A109082 (edge-height), A109129 (leaves), A196050 (edges), A358552 (node-height).
An ordered version is A358553.
Positions of first appearances are A358554.
A000081 counts rooted trees, ordered A000108.
A358575 counts rooted trees by nodes and internals.

Programs

  • Mathematica
    MGTree[n_]:=If[n==1,{},MGTree/@Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Count[MGTree[n],[_],{0,Infinity}],{n,100}] (* Gus Wiseman, Nov 28 2022 *)
  • PARI
    A342507(n) = if( n==1, 0, my(f=factor(n)); 1+sum(k=1,matsize(f)[1],A342507(primepi(f[k,1]))*f[k,2]));

Formula

a(1)=0 and a(n) = A061775(n) - A109129(n) for n > 1.

A358579 Numbers k such that the k-th standard ordered rooted tree has the same number of leaves as internal (non-leaf) nodes.

Original entry on oeis.org

2, 6, 7, 9, 20, 22, 23, 26, 27, 29, 35, 41, 66, 76, 78, 79, 84, 86, 87, 90, 91, 93, 97, 102, 103, 106, 107, 109, 115, 117, 130, 136, 138, 139, 141, 146, 153, 163, 169, 193, 196, 197, 201, 226, 241, 262, 263, 296, 300, 302, 303, 308, 310, 311, 314, 315, 317
Offset: 1

Views

Author

Gus Wiseman, Nov 25 2022

Keywords

Comments

We define the n-th standard ordered rooted tree to be obtained by taking the (n-1)-th composition in standard order (graded reverse-lexicographic, A066099) as root and replacing each part with its own standard ordered rooted tree. This ranking is an ordered variation of Matula-Goebel numbers, giving a bijective correspondence between positive integers and unlabeled ordered rooted trees.

Examples

			The terms together with their corresponding rooted trees begin:
   2: (o)
   6: (o(o))
   7: ((oo))
   9: ((o)(o))
  20: (oo((o)))
  22: (o(((o))))
  23: (((o)(o)))
  26: (o(o(o)))
  27: ((o)(o)(o))
  29: ((o((o))))
  35: (((o))(oo))
  41: (((o(o))))
  66: (o(o)(((o))))
  76: (oo(ooo))
  78: (o(o)(o(o)))
  79: ((o(((o)))))
  84: (oo(o)(oo))
  86: (o(o(oo)))
		

Crossrefs

These ordered trees are counted by A000891.
The unordered version is A358578, counted by A185650.
Height instead of leaves: counted by A358588, unordered A358576.
Height instead of internals: counted by A358590, unordered A358577.
Standard ordered tree number statistics: A358371, A358372, A358379, A358553.
A000081 counts rooted trees, ordered A000108.
A055277 counts trees by nodes and leaves, ordered A001263.

Programs

  • Mathematica
    stc[n_]:=Reverse[Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]];
    srt[n_]:=If[n==1,{},srt/@stc[n-1]];
    Select[Range[100],Count[srt[#],{},{0,Infinity}]==Count[srt[#],[_],{0,Infinity}]&]

Formula

A358371(a(n)) = A358553(a(n)).

A358554 Least Matula-Goebel number of a rooted tree with n internal (non-leaf) nodes.

Original entry on oeis.org

1, 2, 3, 5, 11, 25, 55, 121, 275, 605, 1331, 3025, 6655, 14641, 33275, 73205
Offset: 1

Views

Author

Gus Wiseman, Nov 27 2022

Keywords

Comments

Positions of first appearances in A342507.
The Matula-Goebel number of a rooted tree is the product of primes indexed by the Matula-Goebel numbers of the branches of its root, which gives a bijective correspondence between positive integers and unlabeled rooted trees.

Examples

			The terms together with their corresponding rooted trees begin:
      1: o
      2: (o)
      3: ((o))
      5: (((o)))
     11: ((((o))))
     25: (((o))((o)))
     55: (((o))(((o))))
    121: ((((o)))(((o))))
    275: (((o))((o))(((o))))
    605: (((o))(((o)))(((o))))
   1331: ((((o)))(((o)))(((o))))
   3025: (((o))((o))(((o)))(((o))))
   6655: (((o))(((o)))(((o)))(((o))))
  14641: ((((o)))(((o)))(((o)))(((o))))
  33275: (((o))((o))(((o)))(((o)))(((o))))
  73205: (((o))(((o)))(((o)))(((o)))(((o))))
		

Crossrefs

For height instead of internals we have A007097, firsts of A109082.
For leaves instead of internals we have A151821, firsts of A109129.
Positions of first appearances in A342507.
The ordered version gives firsts of A358553.
A000081 counts rooted trees, ordered A000108.
A034781 counts rooted trees by nodes and height.
A055277 counts rooted trees by nodes and leaves.

Programs

  • Mathematica
    MGTree[n_]:=If[n==1,{},MGTree/@Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    seq=Table[Count[MGTree[n],[_],{0,Infinity}],{n,1000}];
    Table[Position[seq,n][[1,1]],{n,Union[seq]}]
Showing 1-3 of 3 results.