A358591 Number of 2n-node rooted trees whose height, number of leaves, and number of internal (non-leaf) nodes are all equal.
0, 0, 2, 17, 94, 464, 2162, 9743, 42962, 186584, 801316, 3412034, 14430740, 60700548, 254180426, 1060361147, 4409342954, 18285098288, 75645143516, 312286595342, 1286827096964, 5293833371408, 21745951533236, 89208948855542, 365523293690804, 1496048600896784
Offset: 1
Keywords
Examples
The a(3) = 2 and a(4) = 17 trees: ((o)(oo)) (((o))(ooo)) (o(o)(o)) (((o)(ooo))) (((oo))(oo)) (((oo)(oo))) ((o)((ooo))) ((o)(o(oo))) ((o)(oo(o))) ((o(o)(oo))) ((oo)(o(o))) ((oo(o)(o))) (o((o))(oo)) (o((o)(oo))) (o(o)((oo))) (o(o)(o(o))) (o(o(o)(o))) (oo((o)(o))) (oo(o)((o)))
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..100
Crossrefs
These trees are ranked by A358592.
Programs
-
Mathematica
art[n_]:=If[n==1,{{}},Join@@Table[Select[Tuples[art/@c],OrderedQ],{c,Join@@Permutations/@IntegerPartitions[n-1]}]]; Table[Length[Select[art[n],Count[#,[_],{0,Infinity}]==Count[#,{},{0,Infinity}]==Depth[#]-1&]],{n,2,15,2}]
-
PARI
\\ Needs R(n,f) defined in A358589. seq(n) = {Vecrev(R(2*n, (h,p)->if(h<=n, x^h*polcoef(polcoef(p, 2*h, x), h, y))), -n)} \\ Andrew Howroyd, Jan 01 2023
Extensions
Terms a(10) and beyond from Andrew Howroyd, Jan 01 2023