A185650
a(n) is the number of rooted trees with 2n vertices n of whom are leaves.
Original entry on oeis.org
1, 2, 8, 39, 214, 1268, 7949, 51901, 349703, 2415348, 17020341, 121939535, 885841162, 6511874216, 48359860685, 362343773669, 2736184763500, 20805175635077, 159174733727167, 1224557214545788, 9467861087020239, 73534456468877012, 573484090227222260
Offset: 1
From _Gus Wiseman_, Nov 27 2022: (Start)
The a(1) = 1 through a(3) = 8 rooted trees:
(o) ((oo)) (((ooo)))
(o(o)) ((o)(oo))
((o(oo)))
((oo(o)))
(o((oo)))
(o(o)(o))
(o(o(o)))
(oo((o)))
(End)
This is the central column of
A055277.
For height = internals we have
A358587.
Square trees are counted by
A358589.
-
terms = 23;
m = 2 terms;
T[, ] = 0;
Do[T[x_, z_] = z x - x + x Exp[Sum[Series[1/k T[x^k, z^k], {x, 0, j}, {z, 0, j}], {k, 1, j}]] // Normal, {j, 1, m}];
cc = CoefficientList[#, z]& /@ CoefficientList[T[x, z] , x];
Table[cc[[2n+1, n+1]], {n, 1, terms}] (* Jean-François Alcover, Sep 14 2018 *)
art[n_]:=If[n==1,{{}},Join@@Table[Select[Tuples[art/@c],OrderedQ],{c,Join@@Permutations/@IntegerPartitions[n-1]}]];
Table[Length[Select[art[n],Count[#,{},{-2}]==n/2&]],{n,2,10,2}] (* Gus Wiseman, Nov 27 2022 *)
-
\\ here R is A055277 as vector of polynomials
R(n) = {my(A = O(x)); for(j=1, n, A = x*(y - 1 + exp( sum(i=1, j, 1/i * subst( subst( A + x * O(x^(j\i)), x, x^i), y, y^i) ) ))); Vec(A)};
{my(A=R(2*30)); vector(#A\2, k, polcoeff(A[2*k],k))} \\ Andrew Howroyd, May 21 2018
A358589
Number of square rooted trees with n nodes.
Original entry on oeis.org
1, 0, 1, 0, 3, 2, 11, 17, 55, 107, 317, 720, 1938, 4803, 12707, 32311, 85168, 220879, 581112, 1522095, 4014186, 10568936, 27934075, 73826753, 195497427, 517927859, 1373858931, 3646158317, 9684878325, 25737819213, 68439951884, 182070121870, 484583900955, 1290213371950
Offset: 1
The a(1) = 1 through a(7) = 11 trees:
o . (oo) . ((ooo)) ((o)(oo)) (((oooo)))
(o(oo)) (o(o)(o)) ((o(ooo)))
(oo(o)) ((oo(oo)))
((ooo(o)))
(o((ooo)))
(o(o(oo)))
(o(oo(o)))
(oo((oo)))
(oo(o(o)))
(ooo((o)))
((o)(o)(o))
For internals instead of height we have
A185650 aerated, ranked by
A358578.
A358575 counts rooted trees by nodes and internal nodes, ordered
A090181.
-
art[n_]:=If[n==1,{{}},Join@@Table[Select[Tuples[art/@c],OrderedQ],{c,Join@@Permutations/@IntegerPartitions[n-1]}]];
Table[Length[Select[art[n],Count[#,{},{0,Infinity}]==Depth[#]-1&]],{n,1,10}]
-
\\ R(n,f) enumerates trees by height(h), nodes(x) and leaves(y).
R(n,f) = {my(A=O(x*x^n), Z=0); for(h=1, n, my(p = A); A = x*(y - 1 + exp( sum(i=1, n-1, 1/i * subst( subst( A + O(x*x^((n-1)\i)), x, x^i), y, y^i) ) )); Z += f(h, A-p)); Z}
seq(n) = {Vec(R(n, (h,p)->polcoef(p,h,y)), -n)} \\ Andrew Howroyd, Jan 01 2023
A358587
Number of n-node rooted trees of height equal to the number of internal (non-leaf) nodes.
Original entry on oeis.org
0, 0, 0, 0, 1, 4, 14, 41, 111, 282, 688, 1627, 3761, 8540, 19122, 42333, 92851, 202078, 436916, 939359, 2009781, 4281696, 9087670, 19223905, 40544951, 85284194, 178956984, 374691171, 782936761, 1632982372, 3400182458, 7068800357, 14674471611, 30422685030
Offset: 1
The a(5) = 1 through a(7) = 14 trees:
((o)(o)) ((o)(oo)) ((o)(ooo))
(o(o)(o)) ((oo)(oo))
(((o)(o))) (o(o)(oo))
((o)((o))) (oo(o)(o))
(((o))(oo))
(((o)(oo)))
((o)((oo)))
((o)(o(o)))
((o(o)(o)))
(o((o)(o)))
(o(o)((o)))
((((o)(o))))
(((o)((o))))
((o)(((o))))
For leaves instead of height we have
A185650 aerated, ranked by
A358578.
A358575 counts rooted trees by nodes and internal nodes, ordered
A090181.
-
art[n_]:=If[n==1,{{}},Join@@Table[Select[Tuples[art/@c],OrderedQ],{c,Join@@Permutations/@IntegerPartitions[n-1]}]];
Table[Length[Select[art[n],Count[#,[_],{0,Infinity}]==Depth[#]-1&]],{n,1,10}]
-
\\ Needs R(n,f) defined in A358589.
seq(n) = {Vec(R(n, (h,p)->polcoef(subst(p, x, x/y), -h, y)), -n)} \\ Andrew Howroyd, Jan 01 2023
A358581
Number of rooted trees with n nodes, most of which are leaves.
Original entry on oeis.org
1, 0, 1, 1, 4, 5, 20, 28, 110, 169, 663, 1078, 4217, 7169, 27979, 49191, 191440, 345771, 1341974, 2477719, 9589567, 18034670, 69612556, 132984290, 511987473, 991391707, 3807503552, 7460270591, 28585315026, 56595367747, 216381073935, 432396092153
Offset: 1
The a(1) = 1 through a(7) = 20 trees:
o . (oo) (ooo) (oooo) (ooooo) (oooooo)
((ooo)) ((oooo)) ((ooooo))
(o(oo)) (o(ooo)) (o(oooo))
(oo(o)) (oo(oo)) (oo(ooo))
(ooo(o)) (ooo(oo))
(oooo(o))
(((oooo)))
((o)(ooo))
((o(ooo)))
((oo)(oo))
((oo(oo)))
((ooo(o)))
(o((ooo)))
(o(o)(oo))
(o(o(oo)))
(o(oo(o)))
(oo((oo)))
(oo(o)(o))
(oo(o(o)))
(ooo((o)))
A358575 counts rooted trees by nodes and internal nodes, ordered
A090181.
-
art[n_]:=If[n==1,{{}},Join@@Table[Select[Tuples[art/@c],OrderedQ],{c,Join@@Permutations/@IntegerPartitions[n-1]}]];
Table[Length[Select[art[n],Count[#,{},{0,Infinity}]>Count[#,[_],{0,Infinity}]&]],{n,0,10}]
-
\\ See A358584 for R(n).
seq(n) = {my(A=R(n)); vector(n, n, my(u=Vecrev(A[n]/y)); vecsum(u[n\2+1..#u]))} \\ Andrew Howroyd, Dec 31 2022
A358588
Number of n-node ordered rooted trees of height equal to the number of internal (non-leaf) nodes.
Original entry on oeis.org
0, 0, 0, 0, 1, 8, 41, 171, 633, 2171, 7070, 22195, 67830, 203130, 598806, 1743258, 5023711, 14356226, 40737383, 114904941, 322432215, 900707165, 2506181060, 6948996085, 19207795836, 52944197508, 145567226556, 399314965956, 1093107693133, 2986640695436
Offset: 1
The a(5) = 1 and a(6) = 8 ordered trees:
((o)(o)) ((o)(o)o)
((o)(oo))
((o)o(o))
((oo)(o))
(o(o)(o))
(((o))(o))
(((o)(o)))
((o)((o)))
For leaves instead of height we have
A000891, unordered
A185650 aerated.
For leaves instead of internal nodes we have
A358590, unordered
A358589.
A001263 counts ordered rooted trees by nodes and leaves, unordered
A055277.
A080936 counts ordered rooted trees by nodes and height, unordered
A034781.
A090181 counts ordered rooted trees by nodes and internals, unord.
A358575.
-
aot[n_]:=If[n==1,{{}},Join@@Table[Tuples[aot/@c],{c,Join@@Permutations/@IntegerPartitions[n-1]}]];
Table[Length[Select[aot[n],Count[#,[_],{0,Infinity}]==Depth[#]-1&]],{n,1,10}]
-
\\ Needs R(n,f) defined in A358590.
seq(n) = {Vec(R(n, (h,p)->polcoef(subst(p, x, x/y), -h, y)), -n)} \\ Andrew Howroyd, Jan 01 2023
A358584
Number of rooted trees with n nodes, at most half of which are leaves.
Original entry on oeis.org
0, 1, 1, 3, 5, 15, 28, 87, 176, 550, 1179, 3688, 8269, 25804, 59832, 186190, 443407, 1375388, 3346702, 10348509, 25632265, 79020511, 198670299, 610740694, 1555187172, 4768244803, 12276230777, 37546795678, 97601239282, 297831479850, 780790439063, 2377538260547
Offset: 1
The a(2) = 1 through a(6) = 15 trees:
(o) ((o)) ((oo)) (((oo))) (((ooo)))
(o(o)) ((o)(o)) ((o)(oo))
(((o))) ((o(o))) ((o(oo)))
(o((o))) ((oo(o)))
((((o)))) (o((oo)))
(o(o)(o))
(o(o(o)))
(oo((o)))
((((oo))))
(((o)(o)))
(((o(o))))
((o)((o)))
((o((o))))
(o(((o))))
(((((o)))))
A358575 counts rooted trees by nodes and internal nodes, ordered
A090181.
-
art[n_]:=If[n==1,{{}},Join@@Table[Select[Tuples[art/@c],OrderedQ],{c,Join@@Permutations/@IntegerPartitions[n-1]}]];
Table[Length[Select[art[n],Count[#,{},{0,Infinity}]<=Count[#,[_],{0,Infinity}]&]],{n,0,10}]
-
R(n) = {my(A = O(x)); for(j=1, n, A = x*(y - 1 + exp( sum(i=1, j, 1/i * subst( subst( A + O(x*x^(j\i)), x, x^i), y, y^i) ) ))); Vec(A)};
seq(n) = {my(A=R(n)); vector(n, n, vecsum(Vecrev(A[n]/y)[1..n\2]))} \\ Andrew Howroyd, Dec 30 2022
A358582
Number of rooted trees with n nodes, most of which are not leaves.
Original entry on oeis.org
0, 0, 1, 1, 5, 7, 28, 48, 176, 336, 1179, 2420, 8269, 17855, 59832, 134289, 443407, 1025685, 3346702, 7933161, 25632265, 62000170, 198670299, 488801159, 1555187172, 3882403641, 12276230777, 31034921462, 97601239282, 249471619165, 780790439063, 2015194486878
Offset: 1
The a(3) = 1 through a(6) = 7 trees:
((o)) (((o))) (((oo))) ((((oo))))
((o)(o)) (((o)(o)))
((o(o))) (((o(o))))
(o((o))) ((o)((o)))
((((o)))) ((o((o))))
(o(((o))))
(((((o)))))
A358575 counts rooted trees by nodes and internal nodes, ordered
A090181.
-
art[n_]:=If[n==1,{{}},Join@@Table[Select[Tuples[art/@c],OrderedQ],{c,Join@@Permutations/@IntegerPartitions[n-1]}]];
Table[Length[Select[art[n],Count[#,{},{0,Infinity}][_],{0,Infinity}]&]],{n,0,10}]
-
\\ See A358584 for R(n).
seq(n) = {my(A=R(n)); vector(n, n, vecsum(Vecrev(A[n]/y)[1..(n-1)\2]))} \\ Andrew Howroyd, Dec 30 2022
A358728
Number of n-node rooted trees whose node-height is less than their number of leaves.
Original entry on oeis.org
0, 0, 0, 1, 1, 5, 10, 30, 76, 219, 582, 1662, 4614, 13080, 36903, 105098, 298689, 852734, 2434660, 6964349, 19931147, 57100177, 163647811, 469290004, 1346225668, 3863239150, 11089085961, 31838349956, 91430943515, 262615909503, 754439588007, 2167711283560
Offset: 1
The a(1) = 0 through a(7) = 10 trees:
. . . (ooo) (oooo) (ooooo) (oooooo)
((oooo)) ((ooooo))
(o(ooo)) (o(oooo))
(oo(oo)) (oo(ooo))
(ooo(o)) (ooo(oo))
(oooo(o))
((o)(ooo))
((oo)(oo))
(o(o)(oo))
(oo(o)(o))
For internals instead of node-height we have
A358581, ordered
A358585.
-
art[n_]:=If[n==1,{{}},Join@@Table[Select[Tuples[art/@c],OrderedQ],{c,Join@@Permutations/@IntegerPartitions[n-1]}]];
Table[Length[Select[art[n],Depth[#]-1
-
\\ Needs R(n,f) defined in A358589.
seq(n) = {Vec(R(n, (h,p)->sum(j=h+1, n-1, polcoef(p,j,y))), -n)} \\ Andrew Howroyd, Jan 01 2023
A358723
Number of n-node rooted trees of edge-height equal to their number of leaves.
Original entry on oeis.org
0, 1, 0, 2, 1, 6, 7, 26, 43, 135, 276, 755, 1769, 4648, 11406, 29762, 75284, 195566, 503165, 1310705, 3402317, 8892807, 23231037, 60906456, 159786040, 420144405, 1105673058, 2914252306, 7688019511, 20304253421, 53667498236, 141976081288, 375858854594, 995728192169
Offset: 1
The a(1) = 0 through a(7) = 7 trees:
. (o) . ((oo)) ((o)(o)) (((ooo))) (((o))(oo))
(o(o)) ((o(oo))) (((o)(oo)))
((oo(o))) ((o)((oo)))
(o((oo))) ((o)(o(o)))
(o(o(o))) ((o(o)(o)))
(oo((o))) (o((o)(o)))
(o(o)((o)))
For internals instead of edge-height:
A185650 aerated, ranked by
A358578.
-
art[n_]:=If[n==1,{{}},Join@@Table[Select[Tuples[art/@c],OrderedQ],{c,Join@@Permutations/@IntegerPartitions[n-1]}]];
Table[Length[Select[art[n],Count[#,{},{-2}]==Depth[#]-2&]],{n,1,10}]
-
\\ Needs R(n,f) defined in A358589.
seq(n) = {Vec(R(n, (h,p)->polcoef(p,h-1,y)), -n)} \\ Andrew Howroyd, Jan 01 2023
Showing 1-9 of 9 results.
Comments