A358625 a(n) = numerator of Bernoulli(n, 1) / n for n >= 1, a(0) = 1.
1, 1, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -691, 0, 1, 0, -3617, 0, 43867, 0, -174611, 0, 77683, 0, -236364091, 0, 657931, 0, -3392780147, 0, 1723168255201, 0, -7709321041217, 0, 151628697551, 0, -26315271553053477373, 0, 154210205991661, 0, -261082718496449122051
Offset: 0
Examples
Rationals: 1, 1/2, 1/12, 0, -1/120, 0, 1/252, 0, -1/240, 0, 1/132, ... Note that a(68) = -4633713579924631067171126424027918014373353 but A120082(68) = -125235502160125163977598011460214000388469.
References
- Kenneth Ireland and Michael Rosen, A classical introduction to modern number theory, Vol. 84, Graduate Texts in Mathematics, Springer-Verlag, 2nd edition, 1990. [Prop. 15.2.4, p. 238]
Links
- Peter Luschny, Table of n, a(n) for n = 0..300
- Arnold Adelberg, Shaofang Hong and Wenli Ren, Bounds of Divided Universal Bernoulli Numbers and Universal Kummer Congruences, Proceedings of the American Mathematical Society, Vol. 136(1), 2008, p. 61-71.
- Bernd C. Kellner, The structure of Bernoulli numbers, arXiv:math/0411498 [math.NT], 2004.
Crossrefs
Programs
-
GAP
Concatenation([1, 1], List([2..45], n-> NumeratorRat(Bernoulli(n)/(n)))); # G. C. Greubel, Sep 19 2019
-
Magma
[1, 1] cat [Numerator(Bernoulli(n)/(n)): n in [2..45]]; // G. C. Greubel, Sep 19 2019
-
Maple
A358625 := n -> ifelse(n = 0, 1, numer(bernoulli(n, 1) / n)): seq(A358625(n), n = 0.. 40); # Alternative: egf := 1 + x + log(1 - exp(-x)) - log(x): ser := series(egf, x, 42): seq(numer(n! * coeff(ser, x, n)), n = 0..40);
-
Mathematica
Join[{1, 1}, Table[Numerator[BernoulliB[n] / n], {n, 2, 45}]]
-
PARI
a(n) = if (n<=1, 1, numerator(bernfrac(n)/n)); \\ Michel Marcus, Feb 24 2015
Formula
a(n) = numerator(n! * [x^n](1 + x + log(1 - exp(-x)) - log(x))).
a(n) = numerator(-zeta(1 - n)) for n >= 1.
a(n) = numerator(Euler(n-1, 1) / (2*(2^n - 1))) for n >= 1.
denominator(r(2*n)) = A006953(n) for n >= 1.
denominator(r(2*n)) / 2 = A036283(n) for n >= 1.
denominator(r(2*n)) / 12 = A202318(n) for n >= 1.
Comments