cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A358806 a(n) is the minimal determinant of an n X n symmetric matrix using all the integers from 0 to n*(n + 1)/2 - 1.

Original entry on oeis.org

1, 0, -4, -110, -5072, -488212, -86577891
Offset: 0

Views

Author

Stefano Spezia, Dec 02 2022

Keywords

Examples

			a(2) = -4:
    [0, 2;
     2, 1]
a(3) = -110:
    [1, 3, 5;
     3, 4, 0;
     5, 0, 2]
		

Crossrefs

Cf. A358807 (maximal), A358808 (minimal permanent), A358809 (maximal permanent).

A358807 a(n) is the maximal determinant of an n X n symmetric matrix using all the integers from 0 to n*(n + 1)/2 - 1.

Original entry on oeis.org

1, 0, 2, 86, 5911, 652189, 82173814
Offset: 0

Views

Author

Stefano Spezia, Dec 02 2022

Keywords

Examples

			a(2) = 2:
    [1, 0;
     0, 2]
a(3) = 86:
    [0, 3, 4;
     3, 1, 5;
     4, 5, 2]
		

Crossrefs

Cf. A358806 (minimal), A358808 (minimal permanent), A358809 (maximal permanent).

A358809 a(n) is the maximal permanent of an n X n symmetric matrix using all the integers from 0 to n*(n + 1)/2 - 1.

Original entry on oeis.org

1, 0, 4, 186, 21823, 4569098, 1713573909
Offset: 0

Views

Author

Stefano Spezia, Dec 02 2022

Keywords

Examples

			a(2) = 4:
    [0, 2;
     2, 1]
a(3) = 186:
    [0, 4, 5;
     4, 2, 3;
     5, 3, 1]
		

Crossrefs

Cf. A358806 (minimal determinant), A358807 (maximal determinant), A358808 (minimal).

Extensions

a(5)-a(6) from Hugo Pfoertner, Dec 07 2022

A358779 a(n) is the maximal absolute value of the determinant of an n X n symmetric matrix using all the integers from 0 to n*(n + 1)/2 - 1.

Original entry on oeis.org

1, 0, 4, 110, 5911, 652189, 86577891
Offset: 0

Views

Author

Stefano Spezia, Dec 05 2022

Keywords

Crossrefs

Cf. A358806 (minimal determinant), A358807 (maximal determinant), A358808 (minimal permanent), A358809 (maximal permanent).

Formula

a(n) = max(abs(A358806(n)), A358807(n)).
Showing 1-4 of 4 results.