A358832 Number of twice-partitions of n into partitions of distinct lengths and distinct sums.
1, 1, 2, 4, 7, 15, 25, 49, 79, 154, 248, 453, 748, 1305, 2125, 3702, 5931, 9990, 16415, 26844, 43246, 70947, 113653, 182314, 292897, 464614, 739640, 1169981, 1844511, 2888427, 4562850, 7079798, 11064182, 17158151, 26676385, 41075556, 63598025, 97420873, 150043132
Offset: 0
Keywords
Examples
The a(1) = 1 through a(5) = 15 twice-partitions: (1) (2) (3) (4) (5) (11) (21) (22) (32) (111) (31) (41) (11)(1) (211) (221) (1111) (311) (21)(1) (2111) (111)(1) (11111) (21)(2) (22)(1) (3)(11) (31)(1) (111)(2) (211)(1) (111)(11) (1111)(1)
Crossrefs
Programs
-
Mathematica
twiptn[n_]:=Join@@Table[Tuples[IntegerPartitions/@ptn],{ptn,IntegerPartitions[n]}]; Table[Length[Select[twiptn[n],UnsameQ@@Total/@#&&UnsameQ@@Length/@#&]],{n,0,10}]
-
PARI
seq(n)={ local(Cache=Map()); my(g=Vec(-1+1/prod(k=1, n, 1 - y*x^k + O(x*x^n)))); my(F(m,r,b) = my(key=[m,r,b], z); if(!mapisdefined(Cache,key,&z), z = if(r<=0||m==0, r==0, self()(m-1, r, b) + sum(k=1, m, my(c=polcoef(g[m],k)); if(!bittest(b,k)&&c, c*self()(min(m-1,r-m), r-m, bitor(b, 1<
Andrew Howroyd, Dec 31 2022
Extensions
Terms a(21) and beyond from Andrew Howroyd, Dec 31 2022
Comments