A358833 Number of rectangular twice-partitions of n of type (P,R,P).
1, 1, 3, 4, 8, 8, 17, 16, 32, 34, 56, 57, 119, 102, 179, 199, 335, 298, 598, 491, 960, 925, 1441, 1256, 2966, 2026, 3726, 3800, 6488, 4566, 11726, 6843, 16176, 14109, 21824, 16688, 49507, 21638, 50286, 50394, 99408, 44584, 165129, 63262, 208853, 205109, 248150
Offset: 0
Keywords
Examples
The a(1) = 1 through a(5) = 8 twice-partitions: (1) (2) (3) (4) (5) (11) (21) (22) (32) (1)(1) (111) (31) (41) (1)(1)(1) (211) (221) (1111) (311) (2)(2) (2111) (11)(11) (11111) (1)(1)(1)(1) (1)(1)(1)(1)(1)
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..1000
- Gus Wiseman, Sequences enumerating triangles of integer partitions
Crossrefs
Programs
-
Mathematica
twiptn[n_]:=Join@@Table[Tuples[IntegerPartitions/@ptn],{ptn,IntegerPartitions[n]}]; Table[Length[Select[twiptn[n],SameQ@@Length/@#&&SameQ@@Total/@#&]],{n,0,10}]
-
PARI
P(n,y) = {1/prod(k=1, n, 1 - y*x^k + O(x*x^n))} seq(n) = {my(u=Vec(P(n,y)-1)); concat([1], vector(n, n, sumdiv(n, d, my(p=u[n/d]); sum(j=1, n/d, polcoef(p, j, y)^d))))} \\ Andrew Howroyd, Dec 31 2022
Formula
a(n) = Sum_{d|n} Sum_{j=1..n/d} A008284(n/d, j)^d for n > 0. - Andrew Howroyd, Dec 31 2022
Extensions
Terms a(21) and beyond from Andrew Howroyd, Dec 31 2022
Comments