cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A358833 Number of rectangular twice-partitions of n of type (P,R,P).

Original entry on oeis.org

1, 1, 3, 4, 8, 8, 17, 16, 32, 34, 56, 57, 119, 102, 179, 199, 335, 298, 598, 491, 960, 925, 1441, 1256, 2966, 2026, 3726, 3800, 6488, 4566, 11726, 6843, 16176, 14109, 21824, 16688, 49507, 21638, 50286, 50394, 99408, 44584, 165129, 63262, 208853, 205109, 248150
Offset: 0

Views

Author

Gus Wiseman, Dec 04 2022

Keywords

Comments

A twice-partition of n is a sequence of integer partitions, one of each part of an integer partition of n, so these are twice-partitions of n into partitions with constant lengths and constant sums.

Examples

			The a(1) = 1 through a(5) = 8 twice-partitions:
  (1)  (2)     (3)        (4)           (5)
       (11)    (21)       (22)          (32)
       (1)(1)  (111)      (31)          (41)
               (1)(1)(1)  (211)         (221)
                          (1111)        (311)
                          (2)(2)        (2111)
                          (11)(11)      (11111)
                          (1)(1)(1)(1)  (1)(1)(1)(1)(1)
		

Crossrefs

This is the rectangular case of A279787.
This is the case of A306319 with constant sums.
For distinct instead of constant lengths and sums we have A358832.
The version for multiset partitions of integer partitions is A358835.
A063834 counts twice-partitions, strict A296122, row-sums of A321449.
A281145 counts same-trees.

Programs

  • Mathematica
    twiptn[n_]:=Join@@Table[Tuples[IntegerPartitions/@ptn],{ptn,IntegerPartitions[n]}];
    Table[Length[Select[twiptn[n],SameQ@@Length/@#&&SameQ@@Total/@#&]],{n,0,10}]
  • PARI
    P(n,y) = {1/prod(k=1, n, 1 - y*x^k + O(x*x^n))}
    seq(n) = {my(u=Vec(P(n,y)-1)); concat([1], vector(n, n, sumdiv(n, d, my(p=u[n/d]); sum(j=1, n/d, polcoef(p, j, y)^d))))} \\ Andrew Howroyd, Dec 31 2022

Formula

a(n) = Sum_{d|n} Sum_{j=1..n/d} A008284(n/d, j)^d for n > 0. - Andrew Howroyd, Dec 31 2022

Extensions

Terms a(21) and beyond from Andrew Howroyd, Dec 31 2022