cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A358862 a(n) is the smallest n-gonal number with exactly n distinct prime factors.

Original entry on oeis.org

66, 44100, 11310, 103740, 3333330, 185040240, 15529888374, 626141842326, 21647593547580, 351877410344460, 82634328555218440, 2383985537862979050, 239213805711830629680
Offset: 3

Views

Author

Ilya Gutkovskiy, Dec 03 2022

Keywords

Comments

The corresponding indices of n-gonal numbers are 11, 210, 87, 228, 1155, 7854, 66612, 395646, 2193303, ...

Examples

			a(3) = 66, because 66 is a triangular number with 3 distinct prime factors {2, 3, 11} and this is the smallest such number.
		

Crossrefs

Programs

  • Mathematica
    Table[SelectFirst[PolygonalNumber[n,Range[400000]],PrimeNu[#]==n&],{n,3,10}] (* The program generates the first 8 terms of the sequence. *) (* Harvey P. Dale, Sep 09 2023 *)
  • PARI
    a(n) = if(n<3, return()); for(k=1, oo, my(t=(k*(n*k - n - 2*k + 4))\2); if(omega(t) == n, return(t))); \\ Daniel Suteu, Dec 04 2022
    
  • PARI
    omega_polygonals(A, B, n, k) = A=max(A, vecprod(primes(n))); (f(m, p, j) = my(list=List()); forprime(q=p, sqrtnint(B\m, j), my(v=m*q, r=nextprime(q+1)); while(v <= B, if(j==1, if(v>=A && ispolygonal(v,k), listput(list, v)), if(v*r <= B, list=concat(list, f(v, r, j-1)))); v *= q)); list); vecsort(Vec(f(1, 2, n)));
    a(n, k=n) = if(n < 3, return()); my(x=vecprod(primes(n)), y=2*x); while(1, my(v=omega_polygonals(x, y, n, k)); if(#v >= 1, return(v[1])); x=y+1; y=2*x); \\ Daniel Suteu, Dec 04 2022

Extensions

a(12)-a(15) from Daniel Suteu, Dec 04 2022

A358863 a(n) is the smallest n-gonal number with exactly n prime factors (counted with multiplicity).

Original entry on oeis.org

4, 28, 16, 176, 4950, 8910, 1408, 346500, 277992, 7542080, 326656, 544320, 120400000, 145213440, 48549888, 4733575168, 536813568, 2149576704, 3057500160, 938539560960, 1358951178240, 36324805836800, 99956555776, 49212503949312, 118747221196800, 59461613912064, 13749193801728
Offset: 2

Views

Author

Ilya Gutkovskiy, Dec 03 2022

Keywords

Comments

The corresponding indices of n-gonal numbers are 7, 4, 11, 50, 60, 22, 315, 264, 1295, 256, 315, 4480, 4727, 2634, 25123, 8192, 15903, 18432, 314315, 368640, ...
a(n) is the first n-gonal number k such that A001222(k)= n. - Robert Israel, Jan 15 2023

Examples

			a(3) = 28, because 28 is a triangular number with 3 prime factors (counted with multiplicity) {2, 2, 7} and this is the smallest such number.
		

Crossrefs

Programs

  • Maple
    g:= proc(s) local n, p, F;
      for n from 1 to 10^7 do
        p:= (s-2)*n*(n-1)/2 + n;
        if numtheory:-bigomega(p) = s then return p fi;
      od
    end proc:
    map(g, [$2..30]); # Robert Israel, Jan 15 2023
  • Mathematica
    sng[n_]:=Module[{k=1},While[PrimeOmega[PolygonalNumber[n,k]]!=n,k++];PolygonalNumber[ n,k]]; Array[sng,21,2] (* The program generates the first 20 terms of the sequence. *) (* Harvey P. Dale, Feb 19 2023 *)
  • PARI
    a(n) = if(n<3, return()); for(k=1, oo, my(t=(k*(n*k - n - 2*k + 4))\2); if(bigomega(t) == n, return(t))); \\ Daniel Suteu, Dec 04 2022
    
  • PARI
    bigomega_polygonals(A, B, n, k) = A=max(A, 2^n); (f(m, p, n) = my(list=List()); if(n==1, forprime(q=max(p,ceil(A/m)), B\m, my(t=m*q); if(ispolygonal(t,k), listput(list, t))), forprime(q = p, sqrtnint(B\m, n), my(t=m*q); if(ceil(A/t) <= B\t, list=concat(list, f(t, q, n-1))))); list); vecsort(Vec(f(1, 2, n)));
    a(n, k=n) = if(k < 3, return()); my(x=2^n, y=2*x); while(1, my(v=bigomega_polygonals(x, y, n, k)); if(#v >= 1, return(v[1])); x=y+1; y=2*x); \\ Daniel Suteu, Dec 04 2022

Formula

A001222(a(n)) = n. - Robert Israel, Jan 15 2023

Extensions

a(23)-a(28) from Daniel Suteu, Dec 04 2022
a(2)=4 prepended by Robert Israel, Jan 15 2023

A358864 a(n) is the smallest n-gonal pyramidal number with exactly n distinct prime factors.

Original entry on oeis.org

84, 1785, 299880, 1020510, 8897460, 102612510, 33367223274, 249417828660, 9177835927260, 10064864238489060, 5558913993302670, 15633689593760207970, 3792821921183752657200
Offset: 3

Views

Author

Ilya Gutkovskiy, Dec 03 2022

Keywords

Comments

The corresponding indices of n-gonal pyramidal numbers are 7, 17, 84, 115, 220, 468, 3058, 5719, 18290, ...

Examples

			a(3) = 84, because 84 is a tetrahedral (or triangular pyramidal) number with 3 distinct prime factors {2, 3, 7} and this is the smallest such number.
		

Crossrefs

Programs

  • PARI
    a(n) = if(n<3, return()); for(k=1, oo, my(t=(k*(k+1)*((n-2)*k + (5-n)))\6); if(omega(t) == n, return(t))); \\ Daniel Suteu, Dec 05 2022

Extensions

a(12)-a(15) from Daniel Suteu, Dec 05 2022

A358894 a(n) is the smallest centered n-gonal number with exactly n distinct prime factors.

Original entry on oeis.org

460, 99905, 463326, 808208947, 23089262218, 12442607161209225, 53780356630, 700326051644920151, 46634399568693102, 45573558879962759570353
Offset: 3

Views

Author

Ilya Gutkovskiy, Dec 05 2022

Keywords

Examples

			a(3) = 460, because 460 is a centered triangular number with 3 distinct prime factors {2, 5, 23} and this is the smallest such number.
		

Crossrefs

Programs

  • PARI
    a(n) = if(n<3, return()); for(k=1, oo, my(t=((n*k*(k+1))/2+1)); if(omega(t) == n, return(t))); \\ Daniel Suteu, Dec 05 2022

Extensions

a(8)-a(9) from Daniel Suteu, Dec 05 2022
a(10)-a(12) from Daniel Suteu, Dec 06 2022

A358927 a(n) is the smallest tetrahedral number with exactly n prime factors (counted with multiplicity), or -1 if no such number exists.

Original entry on oeis.org

1, -1, 4, 20, 56, 120, 560, 4960, 19600, 41664, 341376, 695520, 7207200, 22238720, 178433024, 1429559296, 179481600, 11453245440, 11444858880, 393079864320, 3928874471424, 5864598896640, 46910348656640, 975649558118400, 3002365391929344, 7805131503206400
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 06 2022

Keywords

Examples

			a(4) = 56, because 56 is a tetrahedral number with 4 prime factors (counted with multiplicity) {2, 2, 2, 7} and this is the smallest such number.
		

Crossrefs

Programs

  • Mathematica
    t[k_] := k*(k + 1)*(k + 2)/6; a[n_] := Module[{k = 1, tk}, While[PrimeOmega[tk = t[k]] != n, k++]; tk]; a[1] = -1; Array[a, 26, 0] (* Amiram Eldar, Dec 09 2022 *)

A358926 a(n) is the smallest centered n-gonal number with exactly n prime factors (counted with multiplicity).

Original entry on oeis.org

316, 1625, 456, 3964051, 21568, 6561, 346528, 3588955448828761, 1684992, 210804461608463437, 36865024, 835904150390625, 2052407296
Offset: 3

Views

Author

Ilya Gutkovskiy, Dec 06 2022

Keywords

Examples

			a(3) = 316, because 316 is a centered triangular number with 3 prime factors (counted with multiplicity) {2, 2, 79} and this is the smallest such number.
		

Crossrefs

Programs

  • Mathematica
    c[n_, k_] := n*k*(k + 1)/2 + 1; a[n_] := Module[{k = 1, ck}, While[PrimeOmega[ck = c[n, k]] != n, k++]; ck]; Array[a, 7, 3] (* Amiram Eldar, Dec 09 2022 *)
  • PARI
    a(n) = if(n<3, return()); for(k=1, oo, my(t=((n*k*(k+1))/2+1)); if(bigomega(t) == n, return(t))); \\ Daniel Suteu, Dec 09 2022

Extensions

a(10)-a(15) from Daniel Suteu, Dec 09 2022

A359016 a(n) is the index of the smallest n-gonal pyramidal number with exactly n prime factors (counted with multiplicity).

Original entry on oeis.org

4, 7, 9, 16, 31, 48, 28, 160, 54, 512, 128, 512, 946, 4224, 512, 10240, 11566, 4095, 1024, 65535, 94794, 180224, 22796, 262143, 1048575, 7077888, 1339848
Offset: 3

Views

Author

Ilya Gutkovskiy, Dec 12 2022

Keywords

Crossrefs

Programs

  • PARI
    a(n) = if(n<3, return()); for(k=1, oo, my(t=(k*(k+1)*((n-2)*k + (5-n)))\6); if(bigomega(t) == n, return(k))); \\ Daniel Suteu, Dec 12 2022

Extensions

a(27)-a(29) from Daniel Suteu, Dec 12 2022
Showing 1-7 of 7 results.