cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A358863 a(n) is the smallest n-gonal number with exactly n prime factors (counted with multiplicity).

Original entry on oeis.org

4, 28, 16, 176, 4950, 8910, 1408, 346500, 277992, 7542080, 326656, 544320, 120400000, 145213440, 48549888, 4733575168, 536813568, 2149576704, 3057500160, 938539560960, 1358951178240, 36324805836800, 99956555776, 49212503949312, 118747221196800, 59461613912064, 13749193801728
Offset: 2

Views

Author

Ilya Gutkovskiy, Dec 03 2022

Keywords

Comments

The corresponding indices of n-gonal numbers are 7, 4, 11, 50, 60, 22, 315, 264, 1295, 256, 315, 4480, 4727, 2634, 25123, 8192, 15903, 18432, 314315, 368640, ...
a(n) is the first n-gonal number k such that A001222(k)= n. - Robert Israel, Jan 15 2023

Examples

			a(3) = 28, because 28 is a triangular number with 3 prime factors (counted with multiplicity) {2, 2, 7} and this is the smallest such number.
		

Crossrefs

Programs

  • Maple
    g:= proc(s) local n, p, F;
      for n from 1 to 10^7 do
        p:= (s-2)*n*(n-1)/2 + n;
        if numtheory:-bigomega(p) = s then return p fi;
      od
    end proc:
    map(g, [$2..30]); # Robert Israel, Jan 15 2023
  • Mathematica
    sng[n_]:=Module[{k=1},While[PrimeOmega[PolygonalNumber[n,k]]!=n,k++];PolygonalNumber[ n,k]]; Array[sng,21,2] (* The program generates the first 20 terms of the sequence. *) (* Harvey P. Dale, Feb 19 2023 *)
  • PARI
    a(n) = if(n<3, return()); for(k=1, oo, my(t=(k*(n*k - n - 2*k + 4))\2); if(bigomega(t) == n, return(t))); \\ Daniel Suteu, Dec 04 2022
    
  • PARI
    bigomega_polygonals(A, B, n, k) = A=max(A, 2^n); (f(m, p, n) = my(list=List()); if(n==1, forprime(q=max(p,ceil(A/m)), B\m, my(t=m*q); if(ispolygonal(t,k), listput(list, t))), forprime(q = p, sqrtnint(B\m, n), my(t=m*q); if(ceil(A/t) <= B\t, list=concat(list, f(t, q, n-1))))); list); vecsort(Vec(f(1, 2, n)));
    a(n, k=n) = if(k < 3, return()); my(x=2^n, y=2*x); while(1, my(v=bigomega_polygonals(x, y, n, k)); if(#v >= 1, return(v[1])); x=y+1; y=2*x); \\ Daniel Suteu, Dec 04 2022

Formula

A001222(a(n)) = n. - Robert Israel, Jan 15 2023

Extensions

a(23)-a(28) from Daniel Suteu, Dec 04 2022
a(2)=4 prepended by Robert Israel, Jan 15 2023

A358865 a(n) is the smallest n-gonal pyramidal number with exactly n prime factors (counted with multiplicity).

Original entry on oeis.org

20, 140, 405, 2856, 25296, 111720, 25984, 5474000, 237600, 223826688, 3852800, 268565760, 1834725376, 175861400000, 335674368, 2863363937280, 4383831556096, 206015846400, 3400704000, 938209120583680, 2981338216980480, 21463949229465600, 45410367307776, 72056803765911552
Offset: 3

Views

Author

Ilya Gutkovskiy, Dec 03 2022

Keywords

Comments

The corresponding indices of n-gonal pyramidal numbers are 4, 7, 9, 16, 31, 48, 28, 160, 54, 512, 128, 512, 946, 4224, 512, 10240, 11566, 4095, 1024, ...

Examples

			a(3) = 20, because 20 is a tetrahedral (or triangular pyramidal) number with 3 prime factors (counted with multiplicity) {2, 2, 5} and this is the smallest such number.
		

Crossrefs

Programs

  • PARI
    a(n) = if(n<3, return()); for(k=1, oo, my(t=(k*(k+1)*((n-2)*k + (5-n)))\6); if(bigomega(t) == n, return(t))); \\ Daniel Suteu, Dec 05 2022

Extensions

a(22)-a(26) from Daniel Suteu, Dec 05 2022

A358864 a(n) is the smallest n-gonal pyramidal number with exactly n distinct prime factors.

Original entry on oeis.org

84, 1785, 299880, 1020510, 8897460, 102612510, 33367223274, 249417828660, 9177835927260, 10064864238489060, 5558913993302670, 15633689593760207970, 3792821921183752657200
Offset: 3

Views

Author

Ilya Gutkovskiy, Dec 03 2022

Keywords

Comments

The corresponding indices of n-gonal pyramidal numbers are 7, 17, 84, 115, 220, 468, 3058, 5719, 18290, ...

Examples

			a(3) = 84, because 84 is a tetrahedral (or triangular pyramidal) number with 3 distinct prime factors {2, 3, 7} and this is the smallest such number.
		

Crossrefs

Programs

  • PARI
    a(n) = if(n<3, return()); for(k=1, oo, my(t=(k*(k+1)*((n-2)*k + (5-n)))\6); if(omega(t) == n, return(t))); \\ Daniel Suteu, Dec 05 2022

Extensions

a(12)-a(15) from Daniel Suteu, Dec 05 2022

A358894 a(n) is the smallest centered n-gonal number with exactly n distinct prime factors.

Original entry on oeis.org

460, 99905, 463326, 808208947, 23089262218, 12442607161209225, 53780356630, 700326051644920151, 46634399568693102, 45573558879962759570353
Offset: 3

Views

Author

Ilya Gutkovskiy, Dec 05 2022

Keywords

Examples

			a(3) = 460, because 460 is a centered triangular number with 3 distinct prime factors {2, 5, 23} and this is the smallest such number.
		

Crossrefs

Programs

  • PARI
    a(n) = if(n<3, return()); for(k=1, oo, my(t=((n*k*(k+1))/2+1)); if(omega(t) == n, return(t))); \\ Daniel Suteu, Dec 05 2022

Extensions

a(8)-a(9) from Daniel Suteu, Dec 05 2022
a(10)-a(12) from Daniel Suteu, Dec 06 2022

A358926 a(n) is the smallest centered n-gonal number with exactly n prime factors (counted with multiplicity).

Original entry on oeis.org

316, 1625, 456, 3964051, 21568, 6561, 346528, 3588955448828761, 1684992, 210804461608463437, 36865024, 835904150390625, 2052407296
Offset: 3

Views

Author

Ilya Gutkovskiy, Dec 06 2022

Keywords

Examples

			a(3) = 316, because 316 is a centered triangular number with 3 prime factors (counted with multiplicity) {2, 2, 79} and this is the smallest such number.
		

Crossrefs

Programs

  • Mathematica
    c[n_, k_] := n*k*(k + 1)/2 + 1; a[n_] := Module[{k = 1, ck}, While[PrimeOmega[ck = c[n, k]] != n, k++]; ck]; Array[a, 7, 3] (* Amiram Eldar, Dec 09 2022 *)
  • PARI
    a(n) = if(n<3, return()); for(k=1, oo, my(t=((n*k*(k+1))/2+1)); if(bigomega(t) == n, return(t))); \\ Daniel Suteu, Dec 09 2022

Extensions

a(10)-a(15) from Daniel Suteu, Dec 09 2022

A358321 a(n) is the index of the smallest n-gonal number with exactly n distinct prime factors.

Original entry on oeis.org

11, 210, 87, 228, 1155, 7854, 66612, 395646, 2193303, 8389010, 122574155, 630341910, 6066475415
Offset: 3

Views

Author

Ilya Gutkovskiy, Dec 12 2022

Keywords

Crossrefs

A359854 a(n) is the least n-gonal number that is the product of n distinct primes, or 0 if there are none.

Original entry on oeis.org

6, 66, 0, 11310, 303810, 28962934, 557221665, 15529888374, 1219300152070, 23900058257790, 1231931106828345, 500402553453949510, 14990069451769732194, 610385355391371697410
Offset: 2

Views

Author

Robert Israel, Jan 15 2023

Keywords

Examples

			a(3) = 66 because 66 = 11*12/2 is the 11th triangular number and is the product of 3 distinct primes 2*3*11.
a(4) = 0 because a 4-gonal number is a square, and thus not the product of distinct primes.
		

Crossrefs

Programs

  • Maple
    f:= proc(s) local n,p,F;
      for n from 1 do
        p:= (s-2)*n*(n-1)/2 + n;
        F:= ifactors(p)[2];
        if nops(F) = s and andmap(t -> t[2]=1, F) then return p fi
       od
    end proc:
    f(2):= 0:
    map(f, [$2..11]);
  • Mathematica
    f[s_] := f[s] = Module[{n, p, F}, For[n = 1, True, n++, p = (s - 2)*n*(n-1)/2 + n; F = FactorInteger[p]; If[Length[F] == s && AllTrue[F, #[[2]] == 1&], Return[ p]]]];
    f[4] = 0;
    Table[Print[n, " ", f[n]]; f[n], {n, 2, 11}] (* Jean-François Alcover, Jan 24 2023, after Maple program *)
  • PARI
    squarefree_omega_polygonals(A, B, n, k) = A=max(A, vecprod(primes(n))); (f(m, p, j) = my(list=List()); my(s=sqrtnint(B\m, j)); if(j==1, forprime(q=max(p, ceil(A/m)), s, if(ispolygonal(m*q, k), listput(list, m*q))), forprime(q=p, s, my(t=m*q); if(ceil(A/t) <= B\t, list=concat(list, f(t, q+1, j-1))))); list); vecsort(Vec(f(1, 2, n)));
    a(n, k=n) = if(n < 2, return()); if(n==2, return(6)); if(n==4, return(0)); my(x=vecprod(primes(n)), y=2*x); while(1, my(v=squarefree_omega_polygonals(x, y, n, k)); if(#v >= 1, return(v[1])); x=y+1; y=2*x); \\ Daniel Suteu, Jan 18 2023

Extensions

a(11)-a(15) from Daniel Suteu, Jan 18 2023
Showing 1-7 of 7 results.