cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A151514 Number of 1-sided snake polyominoes with n cells.

Original entry on oeis.org

1, 1, 2, 5, 10, 24, 53, 126, 289, 686, 1604, 3792, 8925, 21051, 49638, 116858, 275480, 647573, 1525113, 3580673, 8423334, 19755938, 46422915, 108783480, 255359883, 597932342, 1402308318, 3281352516, 7689369625, 17982241557, 42108302007, 98422076879, 230322745835
Offset: 1

Views

Author

Ed Pegg Jr, May 13 2009

Keywords

Comments

A snake polyomino has 2 cells with 1 neighbor each, and (n-2) cells with 2 neighbors each. - Arthur O'Dwyer, Dec 12 2022

Crossrefs

A002013 counts 2-sided (free) snake polyominoes.
A359068 gives the number of 1-sided strip polyominoes (that is, snakes without holes) with n cells; A359068(n) < A151514(n) for n >= 7.

Extensions

a(15)-a(23) from Joseph Myers, Nov 22 2010
a(24)-a(29) from Arthur O'Dwyer, Dec 10 2022
a(30)-a(33) from Arthur O'Dwyer, Jan 19 2023

A359066 a(n) = Sum_{k=0..floor((n-1)/2)} binomial(n,k)*binomial(n-1-k,floor((n-1)/2) - k).

Original entry on oeis.org

1, 1, 5, 7, 31, 49, 209, 351, 1471, 2561, 10625, 18943, 78079, 141569, 580865, 1066495, 4361215, 8085505, 32978945, 61616127, 250806271, 471556097, 1916280833, 3621830655, 14698053631, 27902803969, 113104519169, 215530668031, 872801042431, 1668644405249, 6751535300609
Offset: 1

Views

Author

Bridget Tenner, Dec 15 2022

Keywords

Comments

For n >= 3, this is the number of admissible pinnacle sets in the group S_n^B of signed permutations.
The even-indexed terms appear in A240721 and the odd-indexed terms appear in A178792.

Examples

			For n = 3, the a(3) = 5 admissible pinnacle sets in S_3^B are {}, {-1}, {1}, {2}, {3}.
		

Crossrefs

Programs

  • Maple
    a := n -> add(binomial(n, k)*binomial(n-1-k, iquo(n-1, 2) - k), k = 0..iquo(n-1,2)):
    # Alternative:
    a := n -> binomial(n-1, floor((n-1)/2))*hypergeom([-n, ceil((1-n)/2)], [1-n], -1);
    seq(simplify(a(n)), n=3..31); # Peter Luschny, Jan 03 2023
  • Mathematica
    Array[Sum[Binomial[#, k]*Binomial[# - 1 - k, Floor[(# - 1)/2] - k], {k, 0, Floor[(# - 1)/2]}] &, 31] (* Michael De Vlieger, Jan 03 2023 *)
  • PARI
    a(n) = sum(k=0, (n-1)\2, binomial(n,k)*binomial(n-1-k, (n-1)\2 - k)) \\ Andrew Howroyd, Jan 02 2023

Formula

a(n) = Sum_{k=0..floor((n-1)/2)} binomial(n,k)*binomial(n-1-k,floor((n-1)/2) - k).
a(n) = binomial(n-1, floor((n-1)/2))*hypergeom([-n, ceil((1 -n)/2)], [1 - n], -1). - Peter Luschny, Jan 03 2023

A359067 a(2*n) = Sum_{k=0..n-1} binomial(2*n,k) binomial(2*n-1-k, n-1-k). a(2*n+1) = (Sum_{k=0..n} binomial(2*n+1,k) binomial(2*n-k, n-k)) - binomial(2*n-1, n).

Original entry on oeis.org

0, 1, 4, 7, 28, 49, 199, 351, 1436, 2561, 10499, 18943, 77617, 141569, 579149, 1066495, 4354780, 8085505, 32954635, 61616127, 250713893, 471556097, 1915928117, 3621830655, 14696701553, 27902803969, 113099318869, 215530668031, 872780984131, 1668644405249, 6751457741849
Offset: 1

Views

Author

Bridget Tenner, Dec 15 2022

Keywords

Comments

For n >= 3, the number of admissible pinnacle sets in the group S_n^D of even-signed permutations.
The even-indexed terms match the even-indexed terms of A359066. The odd-indexed terms differ from the odd-indexed terms of A359066 by binomial(2*n-1, n).

Examples

			For n = 3, the a(3) = 4 admissible pinnacle sets in S_3^D are {}, {1}, {2}, {3}.
		

Crossrefs

Programs

  • Maple
    a := n -> if irem(n - 1, 2) = 1 then binomial(n, n/2 - 1)*hypergeom([n/2 + 1, -n/2 + 1], [n/2 + 2], -1) else binomial(n + 1, n/2 + 1/2)*hypergeom([n/2 + 1/2, -n/2 + 1/2], [n/2 + 3/2], -1)/2 - binomial(n - 2, n/2 - 1/2) fi:
    seq(simplify(a(n)), n = 3..31); # Peter Luschny, Jan 03 2023

Formula

a(2*n) = Sum_{k=0..n-1} binomial(2*n,k) binomial(2*n-1-k, n-1-k).
a(2*n+1) = (Sum_{k=0..n} binomial(2*n+1,k) binomial(2*n-k, n-k)) - binomial(2*n-1, n).
a(n) = A240721((n-2)/2) if n-1 is odd and otherwise A178792((n-1)/2) - binomial(2*n - 1, n). - Peter Luschny, Jan 03 2023
Showing 1-3 of 3 results.