cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A359355 a(n) = A359107(2*n, n) = Sum_{j=0..n} Stirling2(2*n, j) = Sum_{j=0..n} A048993(2*n, j).

Original entry on oeis.org

1, 1, 8, 122, 2795, 86472, 3403127, 164029595, 9433737120, 635182667816, 49344452550230, 4371727233798927, 437489737355466560, 49048715505983309703, 6116937802946210183545, 843220239072837883168510, 127757559136845878072576947, 21166434937698025552654090472
Offset: 0

Views

Author

Peter Luschny, Dec 27 2022

Keywords

Comments

a(n) is the number of partitions of an 2n-set that contain at most n nonempty subsets.

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember; `if`(n=0, 1,
          add(expand(b(n-j)*binomial(n-1, j-1)*x), j=1..n))
        end:
    a:= n-> (p-> add(coeff(p, x, i), i=0..n))(b(2*n, 0)):
    seq(a(n), n=0..17);  # Alois P. Heinz, Jun 13 2023
  • Mathematica
    b[n_] := b[n] = If[n == 0, 1, Sum[Expand[b[n-j]*Binomial[n-1, j-1]*x], {j, 1, n}]];
    a[n_] := With[{p = b[2*n]}, Sum[Coefficient[p, x, i], {i, 0, n}]];
    Table[a[n], {n, 0, 17}] (* Jean-François Alcover, Jul 01 2025, after Alois P. Heinz *)
  • PARI
    a(n) = sum(j=0, n, stirling(2*n, j, 2)); \\ Michel Marcus, Dec 27 2022

Formula

a(n) = A102661(2n,n) for n >= 1. - Alois P. Heinz, Jun 13 2023

A359109 Row sums of the accumulated Stirling2 triangle A359107.

Original entry on oeis.org

1, 1, 3, 10, 38, 161, 747, 3753, 20253, 116642, 713130, 4607813, 31345921, 223767233, 1671430607, 13030153118, 105777688842, 892355720117, 7808793918123, 70763428070825, 663061665021433, 6415290033157950, 64009171867651406, 657841277082303361, 6956340269434938161
Offset: 0

Views

Author

Peter Luschny, Dec 27 2022

Keywords

Crossrefs

Cf. A359107.

Programs

  • Maple
    with(ListTools): ps := L -> PartialSums(L):
    seq(add(i, i = ps([seq(Stirling2(n, k), k = 0..n)])), n = 0..24);
  • PARI
    a(n) = sum(k=0, n, sum(j=0, k, stirling(n, j, 2))); \\ Michel Marcus, Dec 28 2022
Showing 1-2 of 2 results.