A359147 Partial sums of A002326.
1, 3, 7, 10, 16, 26, 38, 42, 50, 68, 74, 85, 105, 123, 151, 156, 166, 178, 214, 226, 246, 260, 272, 295, 316, 324, 376, 396, 414, 472, 532, 538, 550, 616, 638, 673, 682, 702, 732, 771, 825, 907, 915, 943, 954, 966, 976, 1012, 1060, 1090, 1190, 1241, 1253, 1359, 1395, 1431
Offset: 0
Keywords
Links
- N. J. A. Sloane, Table of n, a(n) for n = 0..10000
- Pär Kurlberg and Carl Pomerance, On a problem of Arnold: the average multiplicative order of a given integer, Algebra & Number Theory, Vol. 7, No. 4 (2013), pp. 981-999.
Programs
-
Maple
a:= proc(n) option remember; `if`(n=0, 1, a(n-1)+numtheory[order](2, 2*n+1)) end: seq(a(n), n=0..55); # Alois P. Heinz, Feb 14 2023
-
Mathematica
Accumulate[MultiplicativeOrder[2,#]&/@Range[1,151,2]] (* Harvey P. Dale, Jul 08 2023 *)
-
PARI
a(n) = sum(k = 0, n, if(k<0, 0, znorder(Mod(2, 2*k+1)))) \\ Thomas Scheuerle, Feb 14 2023
-
Python
from sympy import n_order def A359147(n): return sum(n_order(2,m) for m in range(1,n+1<<1,2)) # Chai Wah Wu, Feb 14 2023
Formula
a(n) = Sum_{k = 0..n} A007733(2*k+1). - Thomas Scheuerle, Feb 15 2023
Comments