A359281 Numbers k such that the digit sum of 5^k is a power of 5.
0, 1, 8, 208, 977, 1007, 4938, 24709, 24733, 24853, 124274, 3105928
Offset: 1
Examples
5^8 = 390625 and 3+9+0+6+2+5 = 5^2, so 8 is a term.
Programs
-
Maple
filter:= proc(n) local x; x:= convert(convert(5^n,base,10),`+`); x = 5^padic:-ordp(x,5) end proc: select(filter, [$0..10^5]); # Robert Israel, Jan 18 2023
-
Mathematica
Do[If[IntegerQ[Log[5, Plus @@ IntegerDigits[5^n]]], Print[n]], {n, 0, 150000}];
-
PARI
isok5(k) = (k==1) || (k==5) || (ispower(k,,&p) && (p==5)); isok(k) = isok5(sumdigits(5^k)); \\ Michel Marcus, Dec 24 2022
Formula
A067502(n) = 5^a(n).
Extensions
a(11) from Michal Paulovic, Jan 18 2023
Comments