cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A359319 Maximal coefficient of (1 + x) * (1 + x^8) * (1 + x^27) * ... * (1 + x^(n^3)).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 4, 5, 7, 10, 14, 18, 27, 36, 62, 95, 140, 241, 370, 607, 1014, 1646, 2751, 4863, 8260, 13909, 24870, 41671, 73936, 131257, 228204, 411128, 737620, 1292651, 2324494, 4253857, 7487549, 13710736, 25291179, 44938191, 82814603
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 25 2022

Keywords

Comments

Conjecture: Maximal coefficient of Product_{k=1..n} (1 + x^(n^m)) ~ sqrt(4*m + 2) * 2^n / (sqrt(Pi) * n^(m + 1/2)), for m>=0. - Vaclav Kotesovec, Dec 30 2022

Crossrefs

Programs

  • Mathematica
    Table[Max[CoefficientList[Product[1+x^(k^3),{k,n}],x]],{n,0,44}] (* Stefano Spezia, Dec 25 2022 *)
    nmax = 100; poly = ConstantArray[0, nmax^2*(nmax + 1)^2/4 + 1]; poly[[1]] = 1; poly[[2]] = 1; Do[Do[poly[[j + 1]] += poly[[j - k^3 + 1]], {j, k^2*(k + 1)^2/4, k^3, -1}]; Print[k, " ", Max[poly]], {k, 2, nmax}]; (* Vaclav Kotesovec, Dec 29 2022 *)
  • PARI
    a(n) = vecmax(Vec(prod(i=1, n, (1+x^(i^3))))); \\ Michel Marcus, Dec 27 2022

Formula

Conjecture: a(n) ~ sqrt(14) * 2^n / (sqrt(Pi) * n^(7/2)). - Vaclav Kotesovec, Dec 30 2022