cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A359320 Maximal coefficient of (1 + x) * (1 + x^16) * (1 + x^81) * ... * (1 + x^(n^4)).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 3, 4, 5, 5, 6, 9, 13, 17, 24, 34, 53, 84, 130, 177, 290, 500, 797, 1300, 2066, 3591, 6090, 10298, 17330, 29888, 50811, 88358, 153369, 280208, 481289, 845090, 1474535, 2703811, 4808816, 8329214, 14806743, 27529781, 48859783, 87674040, 156471632
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 25 2022

Keywords

Crossrefs

Programs

  • Maple
    f:= proc(n) local i; max(coeffs(expand(mul(1+x^(i^4), i=1..n)))) end proc:
    map(f, [$1..50]); # Robert Israel, Dec 26 2022
  • PARI
    a(n) = vecmax(Vec(prod(k=1, n, 1+x^(k^4)))); \\ Michel Marcus, Dec 26 2022
    
  • Python
    from collections import Counter
    def A359320(n):
        c = {0:1,1:1}
        for i in range(2,n+1):
            j, d = i**4, Counter(c)
            for k in c:
                d[k+j] += c[k]
            c = d
        return max(c.values()) # Chai Wah Wu, Jan 31 2024

Extensions

a(38)-a(50) from Seiichi Manyama, Dec 26 2022