A359328 Maximal coefficient of x^2*(x^2 + x^3)*(x^2 + x^3 + x^5)*...*(x^2 + x^3 + x^5 + ... + x^prime(n)).
1, 1, 1, 2, 4, 12, 46, 251, 1576, 11578, 94933, 875134, 8900088, 99276703, 1214131109, 16107824706, 229757728186, 3499486564517, 56862172844198, 980725126968577, 17899265342632635, 345197504845310134, 7005723403640260805, 149261757412790940113, 3329108788695272565243
Offset: 0
Keywords
Crossrefs
Programs
-
Mathematica
Table[Max[CoefficientList[Product[Sum[x^Prime[i],{i,k}],{k,n}],x]],{n,0,24}]
-
PARI
a(n) = vecmax(Vec(prod(k=1, n, sum(i=1, k, x^prime(i))))); \\ Michel Marcus, Dec 27 2022
-
Python
from collections import Counter from sympy import prime, primerange def A359328(n): if n == 0: return 1 c, p = {0:1}, list(primerange(prime(n)+1)) for k in range(1,n+1): d = Counter() for j in c: a = c[j] for i in p[:k]: d[j+i] += a c = d return max(c.values()) # Chai Wah Wu, Feb 01 2024
Comments