cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A359337 Irregular triangle read by rows: the n-th row gives the exponents of the powers of x corresponding to the maximal coefficient of the product x^2*(x^2 + x^3)*(x^2 + x^3 + x^5)*...*(x^2 + x^3 + x^5 + ... + x^prime(n)).

Original entry on oeis.org

0, 2, 4, 5, 7, 12, 16, 17, 22, 24, 32, 42, 53, 65, 79, 96, 114, 134, 155, 180, 205, 233, 263, 294, 329, 364, 403, 442, 485, 529, 576, 625, 676, 729, 785, 842, 902, 964, 1029, 1097, 1167, 1238, 1313, 1390, 1469, 1552, 1636, 1723, 1813, 1904, 1999, 2096, 2195, 2298
Offset: 0

Views

Author

Stefano Spezia, Dec 27 2022

Keywords

Comments

Conjecture: except for n = 2, 5, and 6, the rows have length equal to 1.

Examples

			The irregular triangle begins:
    0;
    2;
    4, 5;
    7;
   12;
   16, 17;
   22, 24;
   32;
   42;
   53;
   65;
   ...
		

Crossrefs

Cf. A359338 (minimal exponent), A359339 (maximal exponent).

Programs

  • Mathematica
    b[n_]:=CoefficientList[Product[Sum[x^Prime[i],{i,k}],{k,n}],x]; Table[Position[b[n],Max[b[n]]]-1,{n,0,50}]//Flatten

A359338 Minimal exponent of the powers of x corresponding to the maximal coefficient of the product x^2*(x^2 + x^3)*(x^2 + x^3 + x^5)*...*(x^2 + x^3 + x^5 + ... + x^prime(n)).

Original entry on oeis.org

0, 2, 4, 7, 12, 16, 22, 32, 42, 53, 65, 79, 96, 114, 134, 155, 180, 205, 233, 263, 294, 329, 364, 403, 442, 485, 529, 576, 625, 676, 729, 785, 842, 902, 964, 1029, 1097, 1167, 1238, 1313, 1390, 1469, 1552, 1636, 1723, 1813, 1904, 1999, 2096, 2195, 2298, 2402, 2510
Offset: 0

Views

Author

Stefano Spezia, Dec 27 2022

Keywords

Crossrefs

Cf. A359337 (exponents), A359339 (maximal exponent).

Programs

  • Mathematica
    b[n_]:=CoefficientList[Product[Sum[x^Prime[i],{i,k}],{k,n}],x]; Table[Min[Position[b[n],Max[b[n]]]]-1,{n,0,52}]

A359339 Maximal exponent of the powers of x corresponding to the maximal coefficient of the product x^2*(x^2 + x^3)*(x^2 + x^3 + x^5)*...*(x^2 + x^3 + x^5 + ... + x^prime(n)).

Original entry on oeis.org

0, 2, 5, 7, 12, 17, 24, 32, 42, 53, 65, 79, 96, 114, 134, 155, 180, 205, 233, 263, 294, 329, 364, 403, 442, 485, 529, 576, 625, 676, 729, 785, 842, 902, 964, 1029, 1097, 1167, 1238, 1313, 1390, 1469, 1552, 1636, 1723, 1813, 1904, 1999, 2096, 2195, 2298, 2402, 2510
Offset: 0

Views

Author

Stefano Spezia, Dec 27 2022

Keywords

Crossrefs

Cf. A359337 (exponents), A359338 (minimal exponent).

Programs

  • Mathematica
    b[n_]:=CoefficientList[Product[Sum[x^Prime[i],{i,k}],{k,n}],x]; Table[Max[Position[b[n],Max[b[n]]]]-1,{n,0,52}]

A359388 a(n) is the number of compositions of n into prime parts, with the 1st part equal to 2, the 2nd part less than or equal to 3, ..., and the k-th part less than or equal to prime(k), and so on.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 1, 2, 2, 4, 5, 7, 11, 15, 24, 33, 50, 73, 105, 159, 229, 342, 501, 738, 1094, 1604, 2378, 3499, 5166, 7627, 11243, 16610, 24494, 36165, 53376, 78775, 116301, 171642, 253398, 374034, 552139, 815079, 1203166, 1776174, 2621938, 3870572, 5713798, 8434744
Offset: 0

Views

Author

Stefano Spezia, Dec 29 2022

Keywords

Examples

			The 7 such compositions of n = 11 are:
[ 1]  (2, 2, 2, 2, 3);
[ 2]  (2, 2, 2, 3, 2);
[ 3]  (2, 2, 3, 2, 2);
[ 4]  (2, 3, 2, 2, 2);
[ 5]  (2, 2, 2, 5);
[ 6]  (2, 2, 5, 2);
[ 7]  (2, 3, 3, 3).
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, add(
          b(n-ithprime(j), i+1), j=1..min(i, numtheory[pi](n))))
        end:
    a:= n-> b(n, 1):
    seq(a(n), n=0..50);  # Alois P. Heinz, Dec 29 2022
  • Mathematica
    a[n_]:=Coefficient[Expand[Sum[Product[Sum[x^Prime[i], {i, k}], {k,m}], {m, 0,Floor[n/2]}]],x,n]; Array[a,48,0]

Formula

G.f.: Sum_{m>=0} Product_{k=1..m} Sum_{i=1..k} x^prime(i).
a(n) ~ c*A078974^n, where c = 0.094587447... .

A369775 Maximal coefficient of (1 + x^2) * (1 + x^2 + x^3) * (1 + x^2 + x^3 + x^5) * ... * (1 + x^2 + ... + x^prime(n)).

Original entry on oeis.org

1, 1, 2, 5, 16, 65, 293, 1807, 12946, 106475, 972260, 9858553, 109451903, 1323071345, 17398667717, 247055196932, 3753507625272, 60680317203979, 1043036844360792, 18969267205680868, 364107881070036688, 7366172106829696356, 156467911373737550264
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 31 2024

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Max[CoefficientList[Product[(1 + Sum[x^Prime[j], {j, 1, i}]), {i, 1, n}], x]], {n, 0, 22}]
  • PARI
    a(n) = vecmax(Vec(prod(k=1, n, 1 + sum(i=1, k, x^prime(i))))); \\ Michel Marcus, Feb 01 2024
    
  • Python
    from collections import Counter
    from sympy import prime, primerange
    def A369775(n):
        if n == 0: return 1
        c, p = {0:1}, list(primerange(prime(n)+1))
        for k in range(1,n+1):
            d = Counter(c)
            for j in c:
                a = c[j]
                for i in p[:k]:
                    d[j+i] += a
            c = d
        return max(c.values()) # Chai Wah Wu, Feb 01 2024
Showing 1-5 of 5 results.