cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A359328 Maximal coefficient of x^2*(x^2 + x^3)*(x^2 + x^3 + x^5)*...*(x^2 + x^3 + x^5 + ... + x^prime(n)).

Original entry on oeis.org

1, 1, 1, 2, 4, 12, 46, 251, 1576, 11578, 94933, 875134, 8900088, 99276703, 1214131109, 16107824706, 229757728186, 3499486564517, 56862172844198, 980725126968577, 17899265342632635, 345197504845310134, 7005723403640260805, 149261757412790940113, 3329108788695272565243
Offset: 0

Views

Author

Stefano Spezia, Dec 26 2022

Keywords

Comments

Excluding the term 1 from A326178, the exponents of the product x^0*x^2*(x^2 + x^3)*(x^2 + x^3 + x^5)*...*(x^2 + x^3 + x^5 + ... + x^prime(n)) are given by all the other terms of A326178.
a(n) is the number of compositions of the terms of the n-th row of A359337 into n prime parts less than or equal to prime(n), with the first part equal to 2, the second part less than or equal to 3, ..., and the n-th part less than or equal to prime(n).

Crossrefs

Cf. A359337 (corresponding exponents), A359338 (minimal corresponding exponent), A359339 (maximal corresponding exponent).

Programs

  • Mathematica
    Table[Max[CoefficientList[Product[Sum[x^Prime[i],{i,k}],{k,n}],x]],{n,0,24}]
  • PARI
    a(n) = vecmax(Vec(prod(k=1, n, sum(i=1, k, x^prime(i))))); \\ Michel Marcus, Dec 27 2022
    
  • Python
    from collections import Counter
    from sympy import prime, primerange
    def A359328(n):
        if n == 0: return 1
        c, p = {0:1}, list(primerange(prime(n)+1))
        for k in range(1,n+1):
            d = Counter()
            for j in c:
                a = c[j]
                for i in p[:k]:
                    d[j+i] += a
            c = d
        return max(c.values()) # Chai Wah Wu, Feb 01 2024

A359337 Irregular triangle read by rows: the n-th row gives the exponents of the powers of x corresponding to the maximal coefficient of the product x^2*(x^2 + x^3)*(x^2 + x^3 + x^5)*...*(x^2 + x^3 + x^5 + ... + x^prime(n)).

Original entry on oeis.org

0, 2, 4, 5, 7, 12, 16, 17, 22, 24, 32, 42, 53, 65, 79, 96, 114, 134, 155, 180, 205, 233, 263, 294, 329, 364, 403, 442, 485, 529, 576, 625, 676, 729, 785, 842, 902, 964, 1029, 1097, 1167, 1238, 1313, 1390, 1469, 1552, 1636, 1723, 1813, 1904, 1999, 2096, 2195, 2298
Offset: 0

Views

Author

Stefano Spezia, Dec 27 2022

Keywords

Comments

Conjecture: except for n = 2, 5, and 6, the rows have length equal to 1.

Examples

			The irregular triangle begins:
    0;
    2;
    4, 5;
    7;
   12;
   16, 17;
   22, 24;
   32;
   42;
   53;
   65;
   ...
		

Crossrefs

Cf. A359338 (minimal exponent), A359339 (maximal exponent).

Programs

  • Mathematica
    b[n_]:=CoefficientList[Product[Sum[x^Prime[i],{i,k}],{k,n}],x]; Table[Position[b[n],Max[b[n]]]-1,{n,0,50}]//Flatten

A359339 Maximal exponent of the powers of x corresponding to the maximal coefficient of the product x^2*(x^2 + x^3)*(x^2 + x^3 + x^5)*...*(x^2 + x^3 + x^5 + ... + x^prime(n)).

Original entry on oeis.org

0, 2, 5, 7, 12, 17, 24, 32, 42, 53, 65, 79, 96, 114, 134, 155, 180, 205, 233, 263, 294, 329, 364, 403, 442, 485, 529, 576, 625, 676, 729, 785, 842, 902, 964, 1029, 1097, 1167, 1238, 1313, 1390, 1469, 1552, 1636, 1723, 1813, 1904, 1999, 2096, 2195, 2298, 2402, 2510
Offset: 0

Views

Author

Stefano Spezia, Dec 27 2022

Keywords

Crossrefs

Cf. A359337 (exponents), A359338 (minimal exponent).

Programs

  • Mathematica
    b[n_]:=CoefficientList[Product[Sum[x^Prime[i],{i,k}],{k,n}],x]; Table[Max[Position[b[n],Max[b[n]]]]-1,{n,0,52}]
Showing 1-3 of 3 results.